Surface-confined polymerization is a bottom-up strategy to create one-and two-dimensional covalent organic nanostructures with a p-conjugated backbone, which are suitable to be employed in real-life electronic devices, due to their high mechanical resistance and electronic charge transport efficiency. This strategy makes it possible to change the properties of the final nanostructures by a careful choice of the monomer architecture (i.e. of its constituent atoms and their spatial arrangement). Several chemical reactions have been proven to form low-dimensional polymers on surfaces, exploiting a variety of precursors in combination with metal (e.g. Cu, Ag, Au) and insulating (e.g. NaCl, CaCO3) surfaces. One of the main challenges of such an approach is to obtain nanostructures with long-range order, to boost the conductance performances of these materials. Most of the exploited chemical reactions use irreversible coupling between the monomers and, as a consequence, the resulting structures often suffer from poor order and high defect density. This review focuses on the state-of-the-art surface-confined polymerization reactions, with particular attention paid to reversible coupling pathways and irreversible processes including intermediate states, which are key aspects to control to increase the order of the final nanostructure.

Reversibility and intermediate steps as key tools for the growth of extended ordered polymers via on-surface synthesis

Di Giovannantonio Marco;Contini Giorgio
2018

Abstract

Surface-confined polymerization is a bottom-up strategy to create one-and two-dimensional covalent organic nanostructures with a p-conjugated backbone, which are suitable to be employed in real-life electronic devices, due to their high mechanical resistance and electronic charge transport efficiency. This strategy makes it possible to change the properties of the final nanostructures by a careful choice of the monomer architecture (i.e. of its constituent atoms and their spatial arrangement). Several chemical reactions have been proven to form low-dimensional polymers on surfaces, exploiting a variety of precursors in combination with metal (e.g. Cu, Ag, Au) and insulating (e.g. NaCl, CaCO3) surfaces. One of the main challenges of such an approach is to obtain nanostructures with long-range order, to boost the conductance performances of these materials. Most of the exploited chemical reactions use irreversible coupling between the monomers and, as a consequence, the resulting structures often suffer from poor order and high defect density. This review focuses on the state-of-the-art surface-confined polymerization reactions, with particular attention paid to reversible coupling pathways and irreversible processes including intermediate states, which are key aspects to control to increase the order of the final nanostructure.
2018
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
reversibility
bottom-up
low-dimensional systems
covalent coupling
on-surface chemistry
extended ordered polymers
molecular nanostructures
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/410152
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact