Thanks to its ability to effectively counteract disturbance and interference, including the traffic generated by co-located Wi-Fi networks, Time Slotted Channel Hopping (TSCH) is currently gaining momentum in many application fields characterized by demanding reliability and determinism requirements. In partic- ular, the ability of TSCH to change transmission frequency on every attempt sensibly mitigates packet losses and latencies, improving the overall behavior in a tangible way. In this paper, the communication quality achieved by TSCH in a setup that includes real motes exposed to a realistic interfering traffic is evaluated experimentally. A theoretical model is also developed, based on quite simple assumptions about the effectiveness of time and frequency diversity, which satisfactorily matches the real behavior. The model permits to determine how much network parameters like, e.g., the retry limit, actually affect communication, and can be exploited to find proper settings for them. Finally, the ability of channel hopping to prevent narrowband interference from disrupting communication is as- sessed. As results show, this mechanism makes motes suffer from an equivalent interference that roughly corresponds to the mean interference evaluated over all physical channels.

Evaluating and Modeling IEEE 802.15.4 TSCH Resilience against Wi-Fi Interference in New-Generation Highly-Dependable Wireless Sensor Networks

G Cena;S Scanzio;
2020

Abstract

Thanks to its ability to effectively counteract disturbance and interference, including the traffic generated by co-located Wi-Fi networks, Time Slotted Channel Hopping (TSCH) is currently gaining momentum in many application fields characterized by demanding reliability and determinism requirements. In partic- ular, the ability of TSCH to change transmission frequency on every attempt sensibly mitigates packet losses and latencies, improving the overall behavior in a tangible way. In this paper, the communication quality achieved by TSCH in a setup that includes real motes exposed to a realistic interfering traffic is evaluated experimentally. A theoretical model is also developed, based on quite simple assumptions about the effectiveness of time and frequency diversity, which satisfactorily matches the real behavior. The model permits to determine how much network parameters like, e.g., the retry limit, actually affect communication, and can be exploited to find proper settings for them. Finally, the ability of channel hopping to prevent narrowband interference from disrupting communication is as- sessed. As results show, this mechanism makes motes suffer from an equivalent interference that roughly corresponds to the mean interference evaluated over all physical channels.
2020
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
Time Slotted Channel Hopping (TSCH)
Wireless Sensor Networks
IEEE 802.11
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/410160
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact