For many years, the use of advanced composite materials in aeronautics, automotive, and sports applications has been well established. The characteristics of composite materials in terms of weight reduction, fatigue, and corrosion resistance make them competitive in many cases with respect to conventional ones (i.e., metal alloys). On the other hand, the fabrication process of the most employed composites reinforced by carbon or glass fibers requires complex steps that are not always environmentally friendly. In fact, such composite materials are not themselves "green." For these reasons, in the last decades, the use of natural reinforcing fibers has gained increasing attention, allowing the development of new materials sharing the same advantages with conventional composite systems while respecting the environment. Due to their structural complexity, these materials are not always compatible with the use of standard nondestructive evaluation methods, e.g., ultrasounds testing. The effective use of speckle holographic techniques as nondestructive evaluation methods in full field and noncontact modality is proved on "green" composite materials. In particular, electronic speckle pattern interferometry is tested on different kinds of specimens preliminarily subjected to flexural tests. Results show that, in most cases, the damage appears more severe on the back side of specimens, opposite to the loaded one, with the sole exception of basalt laminates.

Characterization of novel "green" composite laminates by means of speckle interferometry

P Russo;V Pagliarulo;V Bianco;F Cimino;P Ferraro
2020

Abstract

For many years, the use of advanced composite materials in aeronautics, automotive, and sports applications has been well established. The characteristics of composite materials in terms of weight reduction, fatigue, and corrosion resistance make them competitive in many cases with respect to conventional ones (i.e., metal alloys). On the other hand, the fabrication process of the most employed composites reinforced by carbon or glass fibers requires complex steps that are not always environmentally friendly. In fact, such composite materials are not themselves "green." For these reasons, in the last decades, the use of natural reinforcing fibers has gained increasing attention, allowing the development of new materials sharing the same advantages with conventional composite systems while respecting the environment. Due to their structural complexity, these materials are not always compatible with the use of standard nondestructive evaluation methods, e.g., ultrasounds testing. The effective use of speckle holographic techniques as nondestructive evaluation methods in full field and noncontact modality is proved on "green" composite materials. In particular, electronic speckle pattern interferometry is tested on different kinds of specimens preliminarily subjected to flexural tests. Results show that, in most cases, the damage appears more severe on the back side of specimens, opposite to the loaded one, with the sole exception of basalt laminates.
2020
Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" - ISASI
Istituto per i Polimeri, Compositi e Biomateriali - IPCB
Green Composites
Flexural propertiers
Speckle interferometry
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/410202
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact