Trapping and manipulation of microparticles using optical tweezers is usually performed within a sample cell formed by two parallel microscope cover slides. In this paper we discuss and demonstrate trapping and manipulation conditions when the cell has more complex configurations like microchannels or capillary tubes. The microchannels are fabricated on the surface of the cover slide by means of lithographic techniques. Experimental results of trapping and micromanipulation for silica microspheres and biological samples immersed in water show the usefulness of our study for microfluidics and biological applications.

Optical trapping and micromanipulation in micro-channels with various configurations

Cojoc D;Carpentiero A;
2004

Abstract

Trapping and manipulation of microparticles using optical tweezers is usually performed within a sample cell formed by two parallel microscope cover slides. In this paper we discuss and demonstrate trapping and manipulation conditions when the cell has more complex configurations like microchannels or capillary tubes. The microchannels are fabricated on the surface of the cover slide by means of lithographic techniques. Experimental results of trapping and micromanipulation for silica microspheres and biological samples immersed in water show the usefulness of our study for microfluidics and biological applications.
2004
0-8194-5452-4
optical tweezers
diffractive optical elements
spatial light modulators
microfluidics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/410241
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 3
social impact