The computation of the eigenvalue decomposition of matrices is one of the most investigated problems in numerical linear algebra. In particular, real nonsymmetric tridiagonal eigenvalue problems arise in a variety of applications. In this paper the problem of computing an eigenvector corresponding to a known eigenvalue of a real nonsymmetric tridiagonal matrix is considered, developing an algorithm that combines part of a QR sweep and part of a QL sweep, both with the shift equal to the known eigenvalue. The numerical tests show the reliability of the proposed method.
Computing the eigenvectors of nonsymmetric tridiagonal matrices
Laudadio T;Mastronardi N;
2021
Abstract
The computation of the eigenvalue decomposition of matrices is one of the most investigated problems in numerical linear algebra. In particular, real nonsymmetric tridiagonal eigenvalue problems arise in a variety of applications. In this paper the problem of computing an eigenvector corresponding to a known eigenvalue of a real nonsymmetric tridiagonal matrix is considered, developing an algorithm that combines part of a QR sweep and part of a QL sweep, both with the shift equal to the known eigenvalue. The numerical tests show the reliability of the proposed method.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.