In the present study, the possibility of recovering both thermal energy and water for agricultural purposes from sewage is evaluated. A treatment plant, based on a sequencing batch biofilter granular reactor (SBBGR) followed by sand filtration and coupled with a solar wastewater source heat pump, was operated from September to November 2018 at a set-point temperature of 14 °C to verify the stability of heat recovery efficiency and the suitability of plant effluent to be reused for irrigation. Heat recovery did not influence the SBBGR treatment and disinfection efficiency, which removed about 90% of suspended solids, chemical and biochemical oxygen demand and ammonia, as well as 70% of total nitrogen, 3 log units of Escherichia coli and more than 1 log unit of Clostridium perfringens. Furthermore, after sand filtration, water quality complied with the standards for agricultural reuse currently in force in several countries. Energy extracted from SBBGR was mainly influenced by environmental conditions, affecting wastewater temperature, and also by wastewater composition, affecting the energy release due to bacterial metabolic activity for carbon and nitrogen removal. Notably, no evident deterioration of energy extraction efficiency from the SBBGR was observed, suggesting negligible fouling phenomena on the submerged thermal exchanger.

Aerobic granular-based technology for water and energy recovery from municipal wastewater

De Sanctis M;Di Iaconi C
2020

Abstract

In the present study, the possibility of recovering both thermal energy and water for agricultural purposes from sewage is evaluated. A treatment plant, based on a sequencing batch biofilter granular reactor (SBBGR) followed by sand filtration and coupled with a solar wastewater source heat pump, was operated from September to November 2018 at a set-point temperature of 14 °C to verify the stability of heat recovery efficiency and the suitability of plant effluent to be reused for irrigation. Heat recovery did not influence the SBBGR treatment and disinfection efficiency, which removed about 90% of suspended solids, chemical and biochemical oxygen demand and ammonia, as well as 70% of total nitrogen, 3 log units of Escherichia coli and more than 1 log unit of Clostridium perfringens. Furthermore, after sand filtration, water quality complied with the standards for agricultural reuse currently in force in several countries. Energy extracted from SBBGR was mainly influenced by environmental conditions, affecting wastewater temperature, and also by wastewater composition, affecting the energy release due to bacterial metabolic activity for carbon and nitrogen removal. Notably, no evident deterioration of energy extraction efficiency from the SBBGR was observed, suggesting negligible fouling phenomena on the submerged thermal exchanger.
2020
Istituto di Ricerca Sulle Acque - IRSA
Energy recovery
Wastewater reuse
Biological treatment
Disinfection efficiency
Solar heat pump
Fouling phenomena
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/410482
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact