Metal monochalcogenides (MX) have recently been rediscovered as two-dimensional materials with electronic properties highly dependent on the number of layers. Although some intriguing properties appear in the few-layer regime, the carrier mobility of MX compounds increases with the number of layers, motivating the interest in multilayered heterostructures or bulk materials. By means of angle-resolved photoemission spectroscopy (ARPES) measurements and density functional theory calculations, we compare the electronic band structure of bulk ?-GaSe and ?-InSe semiconductors. We focus our attention on the top valence band of the two compounds along main symmetry directions, discussing the effect of spin-orbit coupling and contributions from post-transition-metal (Ga or In) and Se atoms. Our results show that the top valence band at ? point is dominated by Se pz states, while the main effect of Ga or In appears more deeply in binding energy, at the Brillouin zone corners, and in the conduction band. These findings explain also the experimental observation of a hole effective mass rather insensitive to the post-transition metal. Finally, by means of spin-resolved ARPES and surface band structure calculations we describe Rashba-Bychkov spin splitting of surface states in ?-InSe.

Insight into the electronic structure of semiconducting ε-GaSe and ε-InSe

Ferrari, L.;Sheverdyaeva, P. M.;Moras, P.;Vobornik, I.;Carbone, C.;
2020

Abstract

Metal monochalcogenides (MX) have recently been rediscovered as two-dimensional materials with electronic properties highly dependent on the number of layers. Although some intriguing properties appear in the few-layer regime, the carrier mobility of MX compounds increases with the number of layers, motivating the interest in multilayered heterostructures or bulk materials. By means of angle-resolved photoemission spectroscopy (ARPES) measurements and density functional theory calculations, we compare the electronic band structure of bulk ?-GaSe and ?-InSe semiconductors. We focus our attention on the top valence band of the two compounds along main symmetry directions, discussing the effect of spin-orbit coupling and contributions from post-transition-metal (Ga or In) and Se atoms. Our results show that the top valence band at ? point is dominated by Se pz states, while the main effect of Ga or In appears more deeply in binding energy, at the Brillouin zone corners, and in the conduction band. These findings explain also the experimental observation of a hole effective mass rather insensitive to the post-transition metal. Finally, by means of spin-resolved ARPES and surface band structure calculations we describe Rashba-Bychkov spin splitting of surface states in ?-InSe.
2020
Istituto Officina dei Materiali - IOM -
Istituto di Struttura della Materia - ISM - Sede Secondaria Trieste
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
electronic structure
spin-orbit coupling
First-principles calculations
File in questo prodotto:
File Dimensione Formato  
insight_Eremeev_DOI.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Altro tipo di licenza
Dimensione 6.84 MB
Formato Adobe PDF
6.84 MB Adobe PDF Visualizza/Apri
PhysRevMaterials.4.084603.pdf

solo utenti autorizzati

Descrizione: Articolo pubblicato
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.71 MB
Formato Adobe PDF
3.71 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/410671
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact