The standard phase-ordering process is obtained by quenching a system, like the Ising model, to below the critical point. This is usually done with periodic boundary conditions to ensure ergodicity breaking in the low-temperature phase. With this arrangement the infinite system is known to remain permanently out of equilibrium, i.e., there exists a well-defined asymptotic state which is time invariant but different from the ordered ferromagnetic state. In this paper we establish the critical nature of this invariant state by demonstrating numerically that the quench dynamics with periodic and antiperiodic boundary conditions are indistinguishable from each other. However, while the asymptotic state does not coincide with the equilibrium state for the periodic case, it coincides instead with the equilibrium state of the antiperiodic case, which in fact is critical. The specific example of the Ising model is shown to be one instance of a more general phenomenon, since an analogous picture emerges in the spherical model, where boundary conditions are kept fixed to periodic, while the breaking or preserving of ergodicity is managed by imposing the spherical constraint either sharply or smoothly.

Relation between statics and dynamics in the quench of the Ising model to below the critical point

Fierro Annalisa
Primo
;
Coniglio Antonio
Secondo
;
2020

Abstract

The standard phase-ordering process is obtained by quenching a system, like the Ising model, to below the critical point. This is usually done with periodic boundary conditions to ensure ergodicity breaking in the low-temperature phase. With this arrangement the infinite system is known to remain permanently out of equilibrium, i.e., there exists a well-defined asymptotic state which is time invariant but different from the ordered ferromagnetic state. In this paper we establish the critical nature of this invariant state by demonstrating numerically that the quench dynamics with periodic and antiperiodic boundary conditions are indistinguishable from each other. However, while the asymptotic state does not coincide with the equilibrium state for the periodic case, it coincides instead with the equilibrium state of the antiperiodic case, which in fact is critical. The specific example of the Ising model is shown to be one instance of a more general phenomenon, since an analogous picture emerges in the spherical model, where boundary conditions are kept fixed to periodic, while the breaking or preserving of ergodicity is managed by imposing the spherical constraint either sharply or smoothly.
2020
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
Ising model
statics
dynamics
File in questo prodotto:
File Dimensione Formato  
prod_427169-doc_152228.pdf

solo utenti autorizzati

Descrizione: full text
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/410747
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact