The computational analysis of facial expressions is an emerging research topic that could overcome the limitations of human perception and get quick and objective outcomes in the assessment of neurodevelopmental disorders (e.g., Autism Spectrum Disorders, ASD). Unfortunately, there have been only a few attempts to quantify facial expression production and most of the scientific literature aims at the easier task of recognizing if either a facial expression is present or not. Some attempts to face this challenging task exist but they do not provide a comprehensive study based on the comparison between human and automatic outcomes in quantifying children's ability to produce basic emotions. Furthermore, these works do not exploit the latest solutions in computer vision and machine learning. Finally, they generally focus only on a homogeneous (in terms of cognitive capabilities) group of individuals. To fill this gap, in this paper some advanced computer vision and machine learning strategies are integrated into a framework aimed to computationally analyze how both ASD and typically developing children produce facial expressions. The framework locates and tracks a number of landmarks (virtual electromyography sensors) with the aim of monitoring facial muscle movements involved in facial expression production. The output of these virtual sensors is then fused to model the individual ability to produce facial expressions. Gathered computational outcomes have been correlated with the evaluation provided by psychologists and evidence has been given that shows how the proposed framework could be effectively exploited to deeply analyze the emotional competence of ASD children to produce facial expressions.

Computational Analysis of Deep Visual Data for Quantifying Facial Expression Production

Leo Marco;Distante Cosimo;Mazzeo Pier Luigi;Spagnolo Paolo;
2019

Abstract

The computational analysis of facial expressions is an emerging research topic that could overcome the limitations of human perception and get quick and objective outcomes in the assessment of neurodevelopmental disorders (e.g., Autism Spectrum Disorders, ASD). Unfortunately, there have been only a few attempts to quantify facial expression production and most of the scientific literature aims at the easier task of recognizing if either a facial expression is present or not. Some attempts to face this challenging task exist but they do not provide a comprehensive study based on the comparison between human and automatic outcomes in quantifying children's ability to produce basic emotions. Furthermore, these works do not exploit the latest solutions in computer vision and machine learning. Finally, they generally focus only on a homogeneous (in terms of cognitive capabilities) group of individuals. To fill this gap, in this paper some advanced computer vision and machine learning strategies are integrated into a framework aimed to computationally analyze how both ASD and typically developing children produce facial expressions. The framework locates and tracks a number of landmarks (virtual electromyography sensors) with the aim of monitoring facial muscle movements involved in facial expression production. The output of these virtual sensors is then fused to model the individual ability to produce facial expressions. Gathered computational outcomes have been correlated with the evaluation provided by psychologists and evidence has been given that shows how the proposed framework could be effectively exploited to deeply analyze the emotional competence of ASD children to produce facial expressions.
2019
Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" - ISASI
assistive technology
autism
facial expressions
computer vision
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/410776
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 26
social impact