High-pressure methods have been demonstrated to be efficient in providing new routes for the synthesis of materials of technological interest. In several molecular compounds, the drastic pressure conditions required for spontaneous transformations have been lowered to the kilobar range by photoactivation of the reactions. At these pressures, the syntheses are accessible to large-volume applications and are of interest to bioscience, space, and environmental chemistry. Here, we show that the short-lived hydroxyl radicals, produced in the photodissociation of water molecules by near-UV radiation at room temperature and pressures of a few tenths of a gigapascal (GPa), can be successfully used to trigger chemical reactions in mixtures of water with carbon monoxide or nitrogen. The detection of molecular hydrogen among the reaction products is of particular relevance. Besides the implications in fundamental chemistry, the mild pressure and irradiation conditions, the efficiency of the process, and the nature of the reactant and product molecules suggest applications in synthesis.

High-pressure photodissociation of water as a tool for hydrogen synthesis and fundamental chemistry

Ceppatelli Matteo;Bini Roberto;
2009

Abstract

High-pressure methods have been demonstrated to be efficient in providing new routes for the synthesis of materials of technological interest. In several molecular compounds, the drastic pressure conditions required for spontaneous transformations have been lowered to the kilobar range by photoactivation of the reactions. At these pressures, the syntheses are accessible to large-volume applications and are of interest to bioscience, space, and environmental chemistry. Here, we show that the short-lived hydroxyl radicals, produced in the photodissociation of water molecules by near-UV radiation at room temperature and pressures of a few tenths of a gigapascal (GPa), can be successfully used to trigger chemical reactions in mixtures of water with carbon monoxide or nitrogen. The detection of molecular hydrogen among the reaction products is of particular relevance. Besides the implications in fundamental chemistry, the mild pressure and irradiation conditions, the efficiency of the process, and the nature of the reactant and product molecules suggest applications in synthesis.
2009
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
high-pressure chemistry
photocatalysis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/410810
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 48
social impact