Adsorption chillers can provide energy efficient cooling and have large potential for performance increase and cost reduction compared to conventional chillers. Among the different R&D activities currently in progress in the field, the development of advanced cascading adsorption cycles is an effective way to improve the performance of standard adsorption units, making this technology especially interesting in applications where waste heat for driving the adsorption chiller is a widely available, such as many industrial processes, cogeneration plants, I.C. engines, district heating networks. In this paper, a novel modelling tool able to simulate complex adsorption cycles is presented and validated with literature data. The simulation tool is used to investigate numerically the performance of a cascade adsorption cycle consisting of a twin adsorber high-temperature cycle with heat recovery coupled with an intermittent adsorber low-temperature cycle. A parametric analysis is carried out showing the optimization potential in terms of Coefficient Of Performance (COP) and specific cooling power (SCP) with varying cycle periods, step time ratios and adsorbent mass ratios. COP of 0.97 with SCP of 142 W/kg are found for water-zeolite 4A (high-temperature) and water-CaCl2/Silica gel (low-temperature cycle). These results are in line with previous findings reported in literature. Finally, useful recommendations for further performance improvement are provided.

Modelling and performance assessment of a thermally-driven cascade adsorption cycle suitable for cooling applications

Freni A;Motta M
2020

Abstract

Adsorption chillers can provide energy efficient cooling and have large potential for performance increase and cost reduction compared to conventional chillers. Among the different R&D activities currently in progress in the field, the development of advanced cascading adsorption cycles is an effective way to improve the performance of standard adsorption units, making this technology especially interesting in applications where waste heat for driving the adsorption chiller is a widely available, such as many industrial processes, cogeneration plants, I.C. engines, district heating networks. In this paper, a novel modelling tool able to simulate complex adsorption cycles is presented and validated with literature data. The simulation tool is used to investigate numerically the performance of a cascade adsorption cycle consisting of a twin adsorber high-temperature cycle with heat recovery coupled with an intermittent adsorber low-temperature cycle. A parametric analysis is carried out showing the optimization potential in terms of Coefficient Of Performance (COP) and specific cooling power (SCP) with varying cycle periods, step time ratios and adsorbent mass ratios. COP of 0.97 with SCP of 142 W/kg are found for water-zeolite 4A (high-temperature) and water-CaCl2/Silica gel (low-temperature cycle). These results are in line with previous findings reported in literature. Finally, useful recommendations for further performance improvement are provided.
2020
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
Adsorption
Cascade cycles
Cooling
Simulation
File in questo prodotto:
File Dimensione Formato  
Thermal Science and Engineering Progress 19 (2020) 100602.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.41 MB
Formato Adobe PDF
1.41 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Aprile-2020-Modelling and performance assessment of a thermally-driven cascade adsorption cycle.pdf

Open Access dal 27/06/2022

Descrizione: “This document is the Accepted Manuscript version of a Published Work that appeared in final form in https://doi.org/10.1016/j.tsep.2020.100602.”
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 864.69 kB
Formato Adobe PDF
864.69 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/410931
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact