Palladium ditelluride (PdTe2) is a novel transition-metal dichalcogenide exhibiting type-II Dirac fermions and topological superconductivity. To assess its potential in technology, its chemical and thermal stability is investigated by means of surface-science techniques, complemented by density functional theory, with successive implementation in electronics, specifically in a millimeter-wave receiver. While water adsorption is energetically unfavorable at room temperature, due to a differential Gibbs free energy of ?+12 kJ mol-1, the presence of Te vacancies makes PdTe2 surfaces unstable toward surface oxidation with the emergence of a TeO2 skin, whose thickness remains sub-nanometric even after one year in air. Correspondingly, the measured photocurrent of PdTe2-based optoelectronic devices shows negligible changes (below 4%) in a timescale of one month, thus excluding the need of encapsulation in the nanofabrication process. Remarkably, the responsivity of a PdTe2-based millimeter-wave receiver is 13 and 21 times higher than similar devices based on black phosphorus and graphene in the same operational conditions, respectively. It is also discovered that pristine PdTe2 is thermally stable in a temperature range extending even above 500 K, thus paving the way toward PdTe2-based high-temperature electronics. Finally, it is shown that the TeO2 skin, formed upon air exposure, can be removed by thermal reduction via heating in vacuum.

PdTe2 Transition-Metal Dichalcogenide: Chemical Reactivity, Thermal Stability, and Device Implementation

Edla R;Torelli P;
2020

Abstract

Palladium ditelluride (PdTe2) is a novel transition-metal dichalcogenide exhibiting type-II Dirac fermions and topological superconductivity. To assess its potential in technology, its chemical and thermal stability is investigated by means of surface-science techniques, complemented by density functional theory, with successive implementation in electronics, specifically in a millimeter-wave receiver. While water adsorption is energetically unfavorable at room temperature, due to a differential Gibbs free energy of ?+12 kJ mol-1, the presence of Te vacancies makes PdTe2 surfaces unstable toward surface oxidation with the emergence of a TeO2 skin, whose thickness remains sub-nanometric even after one year in air. Correspondingly, the measured photocurrent of PdTe2-based optoelectronic devices shows negligible changes (below 4%) in a timescale of one month, thus excluding the need of encapsulation in the nanofabrication process. Remarkably, the responsivity of a PdTe2-based millimeter-wave receiver is 13 and 21 times higher than similar devices based on black phosphorus and graphene in the same operational conditions, respectively. It is also discovered that pristine PdTe2 is thermally stable in a temperature range extending even above 500 K, thus paving the way toward PdTe2-based high-temperature electronics. Finally, it is shown that the TeO2 skin, formed upon air exposure, can be removed by thermal reduction via heating in vacuum.
2020
Istituto Officina dei Materiali - IOM -
DFT calculations; palladium ditelluride; surface science; transition-metal dichalcogenides; XPS
File in questo prodotto:
File Dimensione Formato  
adfm.PT-2019.pdf

accesso aperto

Descrizione: This is the peer reviewed version of the following article:Adv. Funct. Mater. 2020, 30, 1906556, which has been published in final form at https://doi.org/10.1002/adfm.201906556. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.
Tipologia: Documento in Post-print
Licenza: Altro tipo di licenza
Dimensione 3.15 MB
Formato Adobe PDF
3.15 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/410932
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 48
  • ???jsp.display-item.citation.isi??? 48
social impact