By tuning a control parameter, a chaotic system can either display two or more attractors (generalized multistability) or exhibit an interior crisis, whereby a chaotic attractor suddenly expands to include the region of an unstable orbit (bursting regime). Recently, control of multistability and bursting have been experimentally proved in a modulated class B laser by means of a feedback method. In a bistable regime, the method relies on the knowledge of the frequency components of the two attractors. Near an interior crisis, the method requires retrieval of the unstable orbit colliding with the chaotic attractor. We also show that a suitable parameter modulation is able to control bistability in the Lorenz system. We observe that, for every given modulation frequency, the chaotic attractor is destroyed under a boundary crisis. The threshold control amplitude depends on the control frequency and the location of the operating point in the bistable regime. Beyond the boundary crisis, the system remains in the steady state even if the control is switched off, demonstrating control of bistability.

Attractor selection in a modulated laser and in the Lorenz circuit

Meucci Riccardo;
2008

Abstract

By tuning a control parameter, a chaotic system can either display two or more attractors (generalized multistability) or exhibit an interior crisis, whereby a chaotic attractor suddenly expands to include the region of an unstable orbit (bursting regime). Recently, control of multistability and bursting have been experimentally proved in a modulated class B laser by means of a feedback method. In a bistable regime, the method relies on the knowledge of the frequency components of the two attractors. Near an interior crisis, the method requires retrieval of the unstable orbit colliding with the chaotic attractor. We also show that a suitable parameter modulation is able to control bistability in the Lorenz system. We observe that, for every given modulation frequency, the chaotic attractor is destroyed under a boundary crisis. The threshold control amplitude depends on the control frequency and the location of the operating point in the bistable regime. Beyond the boundary crisis, the system remains in the steady state even if the control is switched off, demonstrating control of bistability.
2008
generalized multistability
bursting
control of chaos
Lorenz system
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/411098
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact