One of Saturn's largest moons, Enceladus, possesses a vast extraterrestrial ocean (i.e., exo-ocean) that is increasingly becoming the hotspot of future research initiatives dedicated to the exploration of putative life. Here, a new bio-exploration concept design for Enceladus' exo-ocean is proposed, focusing on the potential presence of organisms across a wide range of sizes (i.e., from uni- to multicellular and animal-like), according to state-of-the-art sensor and robotic platform technologies used in terrestrial deep-sea research. In particular, we focus on combined direct and indirect life-detection capabilities, based on optoacoustic imaging and passive acoustics, as well as molecular approaches. Such biologically oriented sampling can be accompanied by concomitant geochemical and oceanographic measurements to provide data relevant to exo-ocean exploration and understanding. Finally, we describe how this multidisciplinary monitoring approach is currently enabled in terrestrial oceans through cabled (fixed) observatories and their related mobile multiparametric platforms (i.e., Autonomous Underwater and Remotely Operated Vehicles, as well as crawlers, rovers, and biomimetic robots) and how their modified design can be used for exo-ocean exploration.

Exo-Ocean Exploration with Deep-Sea Sensor and Platform Technologies

Marini S;
2020

Abstract

One of Saturn's largest moons, Enceladus, possesses a vast extraterrestrial ocean (i.e., exo-ocean) that is increasingly becoming the hotspot of future research initiatives dedicated to the exploration of putative life. Here, a new bio-exploration concept design for Enceladus' exo-ocean is proposed, focusing on the potential presence of organisms across a wide range of sizes (i.e., from uni- to multicellular and animal-like), according to state-of-the-art sensor and robotic platform technologies used in terrestrial deep-sea research. In particular, we focus on combined direct and indirect life-detection capabilities, based on optoacoustic imaging and passive acoustics, as well as molecular approaches. Such biologically oriented sampling can be accompanied by concomitant geochemical and oceanographic measurements to provide data relevant to exo-ocean exploration and understanding. Finally, we describe how this multidisciplinary monitoring approach is currently enabled in terrestrial oceans through cabled (fixed) observatories and their related mobile multiparametric platforms (i.e., Autonomous Underwater and Remotely Operated Vehicles, as well as crawlers, rovers, and biomimetic robots) and how their modified design can be used for exo-ocean exploration.
2020
Istituto di Scienze Marine - ISMAR
Exo-ocean
Enceladus
Deep-sea technology
Autonomous underwater vehicles
Crawlers
Cryobots
File in questo prodotto:
File Dimensione Formato  
prod_423148-doc_156889.pdf

solo utenti autorizzati

Descrizione: Exo-Ocean Exploration with Deep-Sea Sensor and Platform Technologies
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.08 MB
Formato Adobe PDF
1.08 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/411145
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 19
social impact