High-resolution paleoceanographic reconstruction of surface water properties during the most recent Sapropel event (S1) has been carried out by means of quantitative analyses of planktonic foraminiferal assemblages, planktonic foraminiferal oxygen isotopes (?18O) and XRF elemental data from a 655m depth core recovered in the North Ionian Sea. The results show that the S1 interval presents two distinctive warm phases (S1a and S1b), separated by a cold interruption event (S1i). High resolution faunal and geochemical analyses allow to identify two sub-phases within S1a interval, the oldest one has similar characteristics to S1b interval while the youngest sub-phase has less stratified surface waters with relatively lower nutrient content. The high abundance of Globigerinoides ruber white variety opposite to the low percentages of Neogloboquadrina pachyderma during the pre-S1 phase suggests that the onset of surface waters stratification occurred prior to the beginning of Sapropel deposition, acting as a pre-conditioning phase. Paleo-productivity proxies indicate that the deposition of S1 initiated after an increase in nutrient content, potentially related to increased fluvial inputs. Based on the integrated ecological interpretation of our records we argue that S1a and S1b are characterized as warm, stratified and nutrient rich surface waters in the Ionian Sea, while proxies related to oxygen content indicate dysoxic deep waters linked to a combination of the high nutrient content and stratified water column. The S1 interruption phase is characterized by the entrance of colder waters that caused mixing of the stratified water column and reventilation of the deep dysoxic waters.

High resolution paleo-environmental changes during the Sapropel 1 in the North Ionian Sea, central Mediterranean

Giulia Margaritelli;Fabrizio Lirer
2020

Abstract

High-resolution paleoceanographic reconstruction of surface water properties during the most recent Sapropel event (S1) has been carried out by means of quantitative analyses of planktonic foraminiferal assemblages, planktonic foraminiferal oxygen isotopes (?18O) and XRF elemental data from a 655m depth core recovered in the North Ionian Sea. The results show that the S1 interval presents two distinctive warm phases (S1a and S1b), separated by a cold interruption event (S1i). High resolution faunal and geochemical analyses allow to identify two sub-phases within S1a interval, the oldest one has similar characteristics to S1b interval while the youngest sub-phase has less stratified surface waters with relatively lower nutrient content. The high abundance of Globigerinoides ruber white variety opposite to the low percentages of Neogloboquadrina pachyderma during the pre-S1 phase suggests that the onset of surface waters stratification occurred prior to the beginning of Sapropel deposition, acting as a pre-conditioning phase. Paleo-productivity proxies indicate that the deposition of S1 initiated after an increase in nutrient content, potentially related to increased fluvial inputs. Based on the integrated ecological interpretation of our records we argue that S1a and S1b are characterized as warm, stratified and nutrient rich surface waters in the Ionian Sea, while proxies related to oxygen content indicate dysoxic deep waters linked to a combination of the high nutrient content and stratified water column. The S1 interruption phase is characterized by the entrance of colder waters that caused mixing of the stratified water column and reventilation of the deep dysoxic waters.
2020
Mediterranean Sea
North Ionian Sea
Paleoceanography
planktonic foraminifera
Sapropel 1
XRF elemental ratios
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/411435
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact