Internal waves describe the (linear) response of an incompressible sta- bly stratified fluid to small perturbations. The inclination of their group velocity with respect to the vertical is completely determined by their frequency. Therefore the reflection on a sloping boundary cannot follow Descartes' laws, and it is expected to be singular if the slope has the same inclination as the group velocity. In this paper, we prove that in this critical geometry the weakly viscous and weakly nonlinear wave equations have actually a solution which is well approximated by the sum of the in- cident wave packet, a reflected second harmonic and some boundary layer terms. This result confirms the prediction by Dauxois and Young, and provides precise estimates on the time of validity of this approximation.

Near-critical reflection of internal waves

Roberta Bianchini;
2021

Abstract

Internal waves describe the (linear) response of an incompressible sta- bly stratified fluid to small perturbations. The inclination of their group velocity with respect to the vertical is completely determined by their frequency. Therefore the reflection on a sloping boundary cannot follow Descartes' laws, and it is expected to be singular if the slope has the same inclination as the group velocity. In this paper, we prove that in this critical geometry the weakly viscous and weakly nonlinear wave equations have actually a solution which is well approximated by the sum of the in- cident wave packet, a reflected second harmonic and some boundary layer terms. This result confirms the prediction by Dauxois and Young, and provides precise estimates on the time of validity of this approximation.
2021
Istituto Applicazioni del Calcolo ''Mauro Picone''
internal waves
wave packets
boundary layers
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/411481
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact