The determination of the asymptotically efficient importance sampling distribution for evaluating the tail probability P(Ln>u) for large n by Monte Carlo simulations, is considered. It is assumed that Ln is the likelihood ratio statistic for the optimal detection of signal with spectral density sˆ from noise with spectral density cˆ, Ln=(2n)-1Xnt{Tn (cˆ)-1ITn(cˆ+sˆ)-1 }Xn, cˆ and sˆ being both modeled as invertible Gaussian ARMA processes, and Xn being a vector of n consecutive samples from the noise process. By using large deviation techniques, a sufficient condition for the existence of an asymptotically efficient importance sampling ARMA process, whose coefficients are explicitly computed, is given. Moreover, it is proved that such an optimal process is unique

Optimal importance sampling for some quadratic forms of ARMA processes

Gigli Anna;
1995

Abstract

The determination of the asymptotically efficient importance sampling distribution for evaluating the tail probability P(Ln>u) for large n by Monte Carlo simulations, is considered. It is assumed that Ln is the likelihood ratio statistic for the optimal detection of signal with spectral density sˆ from noise with spectral density cˆ, Ln=(2n)-1Xnt{Tn (cˆ)-1ITn(cˆ+sˆ)-1 }Xn, cˆ and sˆ being both modeled as invertible Gaussian ARMA processes, and Xn being a vector of n consecutive samples from the noise process. By using large deviation techniques, a sufficient condition for the existence of an asymptotically efficient importance sampling ARMA process, whose coefficients are explicitly computed, is given. Moreover, it is proved that such an optimal process is unique
1995
Istituto di Ricerche sulla Popolazione e le Politiche Sociali - IRPPS
File in questo prodotto:
File Dimensione Formato  
prod_42004-doc_58360.pdf

accesso aperto

Descrizione: Optimal importance sampling for some 3 quadratic forms of ARMA processes
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/41149
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact