Integrating graphene as an inorganic nanostructure within a hydrogel matrix enables the creation of a unique hybrid composite combining the peculiar chemical and physical properties of graphene with the high porosity and stability of hydrogels as for example agarose gel. As a consequence, the resulting material forms a double-network system providing advantages deriving from both the components. In this study, we present the synthesis of novel magnetic porous agarose-based graphene oxide microbeads for the adsorption and separation of positively charged aromatic molecules. The hydrogel-based graphene oxide beads revealed an ultrafast adsorption kinetics for positively charged aromatic dyes. We tested this material for the purification of fluorescent-tagged biomolecules. In addition, reduced graphene oxide microbeads were decorated with palladium nanoparticles, showing a high catalytic activity towards the reduction of dyes by sodium borohydride. Our results show that magnetic agarose based graphene microbeads with enhanced physical-chemical properties can be used for several biochemical applications.
Graphene oxide nanocomposite magnetic microbeads for the remediation of positively charged aromatic compounds
Dalla Serra M;
2020
Abstract
Integrating graphene as an inorganic nanostructure within a hydrogel matrix enables the creation of a unique hybrid composite combining the peculiar chemical and physical properties of graphene with the high porosity and stability of hydrogels as for example agarose gel. As a consequence, the resulting material forms a double-network system providing advantages deriving from both the components. In this study, we present the synthesis of novel magnetic porous agarose-based graphene oxide microbeads for the adsorption and separation of positively charged aromatic molecules. The hydrogel-based graphene oxide beads revealed an ultrafast adsorption kinetics for positively charged aromatic dyes. We tested this material for the purification of fluorescent-tagged biomolecules. In addition, reduced graphene oxide microbeads were decorated with palladium nanoparticles, showing a high catalytic activity towards the reduction of dyes by sodium borohydride. Our results show that magnetic agarose based graphene microbeads with enhanced physical-chemical properties can be used for several biochemical applications.File | Dimensione | Formato | |
---|---|---|---|
Minati et al. - 2020 - Graphene oxide nanocomposite magnetic microbeads f.pdf
solo utenti autorizzati
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.06 MB
Formato
Adobe PDF
|
2.06 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.