The small K+ channel Kcv represents the pore module of complex potassium channels. It was found that its gating can be modified by sensor domains, which are N-terminally coupled to the pore. This implies that the short N-terminus of the channel can transmit conformational changes from upstream sensors to the channel gates. To understand the functional role of the N-terminus in the context of the entire channel protein, we apply combinatorial screening of the mechanical coupling and long-range interactions in the Kcv potassium channel by reduced molecular models. The dynamics and mechanical connections in the channel complex show that the N-terminus is indeed mechanically connected to the pore domain. This includes a long rang coupling to the pore and the inner and outer transmembrane domains. Since the latter domains host the two gates of the channel, the data support the hypothesis that mechanical perturbation of the N-terminus can be transmitted to the channel gates. This effect is solely determined by the topology of the channel; sequence details only have an implicit effect on the coarse-grained dynamics via the fold and not through biochemical details at a smaller scale. This observation has important implications for engineering of synthetic channels on the basis of a K+ channel pore. © 2015 Elsevier B.V.All rights reserved.

Tectonics of a K+ channel: The importance of the N-terminus for channel gating

Moroni A;
2015

Abstract

The small K+ channel Kcv represents the pore module of complex potassium channels. It was found that its gating can be modified by sensor domains, which are N-terminally coupled to the pore. This implies that the short N-terminus of the channel can transmit conformational changes from upstream sensors to the channel gates. To understand the functional role of the N-terminus in the context of the entire channel protein, we apply combinatorial screening of the mechanical coupling and long-range interactions in the Kcv potassium channel by reduced molecular models. The dynamics and mechanical connections in the channel complex show that the N-terminus is indeed mechanically connected to the pore domain. This includes a long rang coupling to the pore and the inner and outer transmembrane domains. Since the latter domains host the two gates of the channel, the data support the hypothesis that mechanical perturbation of the N-terminus can be transmitted to the channel gates. This effect is solely determined by the topology of the channel; sequence details only have an implicit effect on the coarse-grained dynamics via the fold and not through biochemical details at a smaller scale. This observation has important implications for engineering of synthetic channels on the basis of a K+ channel pore. © 2015 Elsevier B.V.All rights reserved.
2015
Istituto di Biofisica - IBF
potassium channel
potassium channel Kcv
unclassified drug
potassium channel
amino terminal sequence
Article
carboxy terminal sequence
channel gating
complex formation
controlled study
molecular dynamics
molecular model
priority journal
sequence analysis
chemistry
genetics
mutation
physiology
protein conformation
Ion Channel Gating
Mutation
Potassium Channels
Protein Conformation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/411585
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact