Gauss quadrature can be naturally generalized in order to approximate quasi-definite linear functionals, where the interconnections with (formal) orthogonal polynomials, (complex) Jacobi matrices, and the Lanczos algorithm are analogous to those in the positive definite case. In this survey we review these relationships with giving references to the literature that presents them in several related contexts. In particular, the existence of the n-weight (complex) Gauss quadrature corresponds to successfully performing the first n steps of the Lanczos algorithm for generating biorthogonal bases of the two associated Krylov subspaces. The Jordan decomposition of the (complex) Jacobi matrix can be explicitly expressed in terms of the Gauss quadrature nodes and weights and the associated orthogonal polynomials. Since the output of the Lanczos algorithm can be made real whenever the input is real, the value of the Gauss quadrature is a real number whenever all relevant moments of the quasi-definite linear functional are real.

The lanczos algorithm and complex gauss quadrature

Pozza S;
2018

Abstract

Gauss quadrature can be naturally generalized in order to approximate quasi-definite linear functionals, where the interconnections with (formal) orthogonal polynomials, (complex) Jacobi matrices, and the Lanczos algorithm are analogous to those in the positive definite case. In this survey we review these relationships with giving references to the literature that presents them in several related contexts. In particular, the existence of the n-weight (complex) Gauss quadrature corresponds to successfully performing the first n steps of the Lanczos algorithm for generating biorthogonal bases of the two associated Krylov subspaces. The Jordan decomposition of the (complex) Jacobi matrix can be explicitly expressed in terms of the Gauss quadrature nodes and weights and the associated orthogonal polynomials. Since the output of the Lanczos algorithm can be made real whenever the input is real, the value of the Gauss quadrature is a real number whenever all relevant moments of the quasi-definite linear functional are real.
2018
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Quasi-definite linear functionals
Gauss quadrature
Formal orthogonal polynomials
Complex Jacobi matrices
Matching moments
Lanczos algorithm
File in questo prodotto:
File Dimensione Formato  
prod_424337-doc_151317.pdf

accesso aperto

Descrizione: The lanczos algorithm and complex gauss quadrature
Tipologia: Versione Editoriale (PDF)
Dimensione 333.88 kB
Formato Adobe PDF
333.88 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/411692
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact