Dry land landscapes self-organize to form various patterns of vegetation patchiness. Two major classes of patterns can be distinguished: regular patterns with characteristic length scales and scale-free patterns. The latter form under conditions of global competition over the water resource. In this paper we show that the asymptotic dynamics of scale-free vegetation patterns involve patch coarsening similar to Ostwald ripening in two-phase mixtures. We demonstrate it numerically, using a spatially explicit model for water-limited vegetation, and further study it by drawing an analogy to an activator-inhibitor system that shares many properties with the vegetation system. The ecological implications of patch coarsening may not be highly significant due to the long time scales involved. The reported results, however, raise an interesting pattern formation question associated with the incompatibility of mechanisms that stabilize vegetation spots and the condition of global competition.

OSTWALD RIPENING IN DRYLAND VEGETATION

von Hardenberg Jost;
2012

Abstract

Dry land landscapes self-organize to form various patterns of vegetation patchiness. Two major classes of patterns can be distinguished: regular patterns with characteristic length scales and scale-free patterns. The latter form under conditions of global competition over the water resource. In this paper we show that the asymptotic dynamics of scale-free vegetation patterns involve patch coarsening similar to Ostwald ripening in two-phase mixtures. We demonstrate it numerically, using a spatially explicit model for water-limited vegetation, and further study it by drawing an analogy to an activator-inhibitor system that shares many properties with the vegetation system. The ecological implications of patch coarsening may not be highly significant due to the long time scales involved. The reported results, however, raise an interesting pattern formation question associated with the incompatibility of mechanisms that stabilize vegetation spots and the condition of global competition.
2012
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
Pattern formation
vegetation patterns
activator-inhibitor systems
scale-free patterns
phase coarsening
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/41224
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 11
social impact