Engineering the electromagnetic environment of a quantum emitter gives rise to a plethora of exotic light -matter interactions. In particular, photonic lattices can seed long-lived atom-photon bound states inside photonic band gaps. Here, we report on the concept and implementation of a novel microwave architecture consisting of an array of compact superconducting resonators in which we have embedded two frequency -tunable artificial atoms. We study the atom-field interaction and access previously unexplored coupling regimes, in both the single-and double-excitation subspace. In addition, we demonstrate coherent interactions between two atom-photon bound states, in both resonant and dispersive regimes, that are suitable for the implementation of SWAP and CZ two-qubit gates. The presented architecture holds promise for quantum simulation with tunable-range interactions and photon transport experiments in the nonlinear regime.

Controlling Atom-Photon Bound States in an Array of Josephson-Junction Resonators

Ciccarello Francesco;
2022

Abstract

Engineering the electromagnetic environment of a quantum emitter gives rise to a plethora of exotic light -matter interactions. In particular, photonic lattices can seed long-lived atom-photon bound states inside photonic band gaps. Here, we report on the concept and implementation of a novel microwave architecture consisting of an array of compact superconducting resonators in which we have embedded two frequency -tunable artificial atoms. We study the atom-field interaction and access previously unexplored coupling regimes, in both the single-and double-excitation subspace. In addition, we demonstrate coherent interactions between two atom-photon bound states, in both resonant and dispersive regimes, that are suitable for the implementation of SWAP and CZ two-qubit gates. The presented architecture holds promise for quantum simulation with tunable-range interactions and photon transport experiments in the nonlinear regime.
2022
Istituto Nanoscienze - NANO
Atoms; Microwave resonators; Optical lattices; Photonic band gap; Photons; Quantum chemistry; Quantum optics; Superconducting resonators
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/412347
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 43
social impact