In this paper, we address the problem of supporting stateful workflows following a Function-as-a-Service (FaaS) model in edge networks. In particular we focus on the problem of data transfer, which can be a performance bottleneck due to the limited speed of communication links in some edge scenarios and we propose three different schemes: a pure FaaS implementation, StateProp, i.e., propagation of the application state throughout the entire chain of functions, and StateLocal, i.e., a solution where the state is kept local to the workers that run functions and retrieved only as needed. We then extend the proposed schemes to the more general case of applications modeled as Directed Acyclic Graphs (DAGs), which cover a broad range of practical applications, e.g., in the Internet of Things (IoT) area. Our contribution is validated via a prototype implementation. Experiments in emulated conditions show that applying the data locality principle reduces significantly the volume of network traffic required and improves the end-to-end delay performance, especially with local caching on edge nodes and low link speeds.
FaaS execution models for edge applications
Cicconetti C;Conti M;Passarella A
2022
Abstract
In this paper, we address the problem of supporting stateful workflows following a Function-as-a-Service (FaaS) model in edge networks. In particular we focus on the problem of data transfer, which can be a performance bottleneck due to the limited speed of communication links in some edge scenarios and we propose three different schemes: a pure FaaS implementation, StateProp, i.e., propagation of the application state throughout the entire chain of functions, and StateLocal, i.e., a solution where the state is kept local to the workers that run functions and retrieved only as needed. We then extend the proposed schemes to the more general case of applications modeled as Directed Acyclic Graphs (DAGs), which cover a broad range of practical applications, e.g., in the Internet of Things (IoT) area. Our contribution is validated via a prototype implementation. Experiments in emulated conditions show that applying the data locality principle reduces significantly the volume of network traffic required and improves the end-to-end delay performance, especially with local caching on edge nodes and low link speeds.File | Dimensione | Formato | |
---|---|---|---|
prod_474703-doc_193699.pdf
accesso aperto
Descrizione: FaaS execution models for edge applications
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.36 MB
Formato
Adobe PDF
|
1.36 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.