The current understanding of the impact of natural cloud condensation nuclei (CCN) variability on cloud properties in marine air is low, thus contributing to climate prediction uncertainty. By analyzing cloud remote sensing observations (2009-2015) at Mace Head (west coast of Ireland), we show the oceanic biota impact on the microphysical properties of stratiform clouds over the Northeast Atlantic Ocean. During spring to summer (seasons of enhanced oceanic biological activity), clouds typically host a higher number of smaller droplets resulting from increased aerosol number concentration in the CCN relevant-size range. The induced increase in cloud droplet number concentration (+100%) and decrease in their radius (-14%) are comparable in magnitude to that generated by the advection of anthropogenically influenced air masses over the background marine boundary layer. Cloud water content and albedo respond to marine CCN perturbations with positive adjustments, making clouds brighter as the number of droplets increases. Cloud susceptibility to marine aerosols overlaps with a large variability of cloud macrophysical and optical properties primarily affected by the meteorological conditions. The above findings suggest the existence of a potential feedback mechanism between marine biota and the marine cloud-climate system.

Phytoplankton Impact on Marine Cloud Microphysical Properties Over the Northeast Atlantic Ocean

Mansour, Karam
;
Rinaldi, Matteo
;
Decesari, Stefano;Paglione, Marco;Facchini, Maria C.;
2022

Abstract

The current understanding of the impact of natural cloud condensation nuclei (CCN) variability on cloud properties in marine air is low, thus contributing to climate prediction uncertainty. By analyzing cloud remote sensing observations (2009-2015) at Mace Head (west coast of Ireland), we show the oceanic biota impact on the microphysical properties of stratiform clouds over the Northeast Atlantic Ocean. During spring to summer (seasons of enhanced oceanic biological activity), clouds typically host a higher number of smaller droplets resulting from increased aerosol number concentration in the CCN relevant-size range. The induced increase in cloud droplet number concentration (+100%) and decrease in their radius (-14%) are comparable in magnitude to that generated by the advection of anthropogenically influenced air masses over the background marine boundary layer. Cloud water content and albedo respond to marine CCN perturbations with positive adjustments, making clouds brighter as the number of droplets increases. Cloud susceptibility to marine aerosols overlaps with a large variability of cloud macrophysical and optical properties primarily affected by the meteorological conditions. The above findings suggest the existence of a potential feedback mechanism between marine biota and the marine cloud-climate system.
2022
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
cloud microphysics
cloud optical properties
marine aerosol
North Atlantic
phytoplankton
SYRSOC
File in questo prodotto:
File Dimensione Formato  
Mansour JGR 2022.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.42 MB
Formato Adobe PDF
4.42 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/412771
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact