The evolution of quantum computing technologies has been advancing at a steady pace in the recent years, and the current trend suggests that it will become available at scale for commercial purposes in the near future. The acceleration can be boosted by pooling compute infrastructures to either parallelize algorithm execution or solve bigger instances that are not feasible on a single quantum computer, which requires an underlying Quantum Internet: the interconnection of quantum computers by quantum links and repeaters to exchange entangled quantum bits. However, Quantum Internet research so far has been focused on provisioning point-to-point flows only, which is suitable for (e.g.) quantum sensing and metrology, but not for distributed quantum computing. In this paper, after a primer on quantum computing and networking, we investigate the requirements and objectives of smart computing on distributed nodes from the perspective of quantum network provisioning. We then design a resource allocation strategy that is evaluated through a comprehensive simulation campaign, whose results highlight the key features and performance issues, and lead the way to further investigation in this direction.

Resource Allocation in Quantum Networks for Distributed Quantum Computing

Cicconetti C;Conti M;Passarella A
2022

Abstract

The evolution of quantum computing technologies has been advancing at a steady pace in the recent years, and the current trend suggests that it will become available at scale for commercial purposes in the near future. The acceleration can be boosted by pooling compute infrastructures to either parallelize algorithm execution or solve bigger instances that are not feasible on a single quantum computer, which requires an underlying Quantum Internet: the interconnection of quantum computers by quantum links and repeaters to exchange entangled quantum bits. However, Quantum Internet research so far has been focused on provisioning point-to-point flows only, which is suitable for (e.g.) quantum sensing and metrology, but not for distributed quantum computing. In this paper, after a primer on quantum computing and networking, we investigate the requirements and objectives of smart computing on distributed nodes from the perspective of quantum network provisioning. We then design a resource allocation strategy that is evaluated through a comprehensive simulation campaign, whose results highlight the key features and performance issues, and lead the way to further investigation in this direction.
2022
Istituto di informatica e telematica - IIT
Distributed Quantum Computing
Quantum Internet
Quantum Routing
File in questo prodotto:
File Dimensione Formato  
prod_474800-doc_193786.pdf

accesso aperto

Descrizione: Resource Allocation in Quantum Networks for Distributed Quantum Computing
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 944.67 kB
Formato Adobe PDF
944.67 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/412923
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? ND
social impact