In the context of climate change, the correct management of groundwater, which is strategic for meeting water needs, becomes essential. Groundwater modeling is particularly crucial for the sustainable and efficient management of groundwater. This manuscript provides different types of modeling according to data availability and features of three porous aquifer systems in Italy (Empoli, Magra, and Brenta systems). The models calibrated on robust time series enabled the performing of forecast simulations capable of representing the quantitative and qualitative response to expected climate regimes. For the Empoli aquifer, the process-based models highlighted the system's ability to mitigate the effects of dry climate conditions thanks to its storage capability. The data-driven models concerning the Brenta foothill aquifer pointed out the high sensitivity of the system to climate extremes, thus suggesting the need for specific water management actions. The integrated datadriven/process-based approach developed for the Magra Valley aquifer remarked that the water quantity and quality effects are tied to certain boundary conditions over dry climate periods. This work shows that, for groundwater modeling, the choice of the suitable approach is mandatory, and it mainly depends on the specific aquifer features that result in different ways to be sensitive to climate. This manuscript also provides a novel outcome involving the integrated approach wherein it is a very efficient tool for forecasting modeling when boundary conditions, which significantly affect the behavior of such systems, are subjected to evolve under expected climate scenarios.

Groundwater modeling with process-based and data-driven approaches in the context of climate change

Menichini M;Franceschi L;Raco B;Masetti G;Scozzari A;Doveri M
2022

Abstract

In the context of climate change, the correct management of groundwater, which is strategic for meeting water needs, becomes essential. Groundwater modeling is particularly crucial for the sustainable and efficient management of groundwater. This manuscript provides different types of modeling according to data availability and features of three porous aquifer systems in Italy (Empoli, Magra, and Brenta systems). The models calibrated on robust time series enabled the performing of forecast simulations capable of representing the quantitative and qualitative response to expected climate regimes. For the Empoli aquifer, the process-based models highlighted the system's ability to mitigate the effects of dry climate conditions thanks to its storage capability. The data-driven models concerning the Brenta foothill aquifer pointed out the high sensitivity of the system to climate extremes, thus suggesting the need for specific water management actions. The integrated datadriven/process-based approach developed for the Magra Valley aquifer remarked that the water quantity and quality effects are tied to certain boundary conditions over dry climate periods. This work shows that, for groundwater modeling, the choice of the suitable approach is mandatory, and it mainly depends on the specific aquifer features that result in different ways to be sensitive to climate. This manuscript also provides a novel outcome involving the integrated approach wherein it is a very efficient tool for forecasting modeling when boundary conditions, which significantly affect the behavior of such systems, are subjected to evolve under expected climate scenarios.
2022
Istituto di Geoscienze e Georisorse - IGG - Sede Pisa
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Water management
Groundwater forecasting
Foothill aquifers
Brenta River plain
Empoli plain
Magra Valley
File in questo prodotto:
File Dimensione Formato  
prod_474806-doc_193792.pdf

accesso aperto

Descrizione: Groundwater Modeling with Process-Based and Data-Driven Approaches in the Context of Climate Change
Tipologia: Versione Editoriale (PDF)
Dimensione 8.39 MB
Formato Adobe PDF
8.39 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/412929
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact