Silicon is usually considered a brittle material. However, under specific conditions, such as high temperature, high confining pressure, and complex loading patterns involved in surface machining or microindentation, extremely localized regions with plastic deformation may show up. Herein this paper, we demonstrate the possibility to induce a permanent deformation field extending over macroscopically wide regions, with no need for extreme load. Indeed, this is obtained at room temperature upon applying a relatively small pressure onto single crystal silicon slices machined with a pre-notch at the bottom surface. To deeply characterize the deformed region, which is visible to the naked eye, we adopted an experimental multiscale approach, which involves a combination of optical microscopy and profilometry, Raman spectroscopy, and Electron Backscatter Diffraction (EBSD). Overall, the results collected via different techniques show, in a consistent fashion, that our proposed methodology is an effective engineering pathway to induce controlled permanent deformation in silicon samples, whose effects can be observed across different length scales, from macro to nano.

Permanent, macroscopic deformation of single crystal silicon by mild loading

A Chiappini;
2023

Abstract

Silicon is usually considered a brittle material. However, under specific conditions, such as high temperature, high confining pressure, and complex loading patterns involved in surface machining or microindentation, extremely localized regions with plastic deformation may show up. Herein this paper, we demonstrate the possibility to induce a permanent deformation field extending over macroscopically wide regions, with no need for extreme load. Indeed, this is obtained at room temperature upon applying a relatively small pressure onto single crystal silicon slices machined with a pre-notch at the bottom surface. To deeply characterize the deformed region, which is visible to the naked eye, we adopted an experimental multiscale approach, which involves a combination of optical microscopy and profilometry, Raman spectroscopy, and Electron Backscatter Diffraction (EBSD). Overall, the results collected via different techniques show, in a consistent fashion, that our proposed methodology is an effective engineering pathway to induce controlled permanent deformation in silicon samples, whose effects can be observed across different length scales, from macro to nano.
2023
Istituto di fotonica e nanotecnologie - IFN - Sede Secondaria Povo (Trento)
Silicon Mechanical properties Permanent deformation Raman spectroscopy EBSD
File in questo prodotto:
File Dimensione Formato  
prod_477072-doc_195160.pdf

solo utenti autorizzati

Descrizione: Permanent, macroscopic deformation of single crystal silicon by mild loading
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.16 MB
Formato Adobe PDF
2.16 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/412960
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact