Flexible, biocompatible piezoelectric materials are of considerable research interest for a variety of applications, but many suffer from low response or high cost to manufacture. Herein, novel piezoelectric force and touch sensors based on self-assembled monolayers of oligopeptides are presented, which produce large piezoelectric voltage response and are easily manufactured without the need for electrical poling. While the devices generate modest piezoelectric charge constants (d33) of up to 9.8 pC N-1, they exhibit immense piezoelectric voltage constants (g33) up to 2 V m N-1. Furthermore, a flexible device prototype is demonstrated that produces open-circuit voltages of nearly 6 V under gentle bending motion. Improvements in peptide selection and device construction promise to further improve the already outstanding voltage response and open the door to numerous practical applications.

Intrinsically Polar Piezoelectric Self-Assembled Oligopeptide Monolayers

Giuseppe Cassone;
2021

Abstract

Flexible, biocompatible piezoelectric materials are of considerable research interest for a variety of applications, but many suffer from low response or high cost to manufacture. Herein, novel piezoelectric force and touch sensors based on self-assembled monolayers of oligopeptides are presented, which produce large piezoelectric voltage response and are easily manufactured without the need for electrical poling. While the devices generate modest piezoelectric charge constants (d33) of up to 9.8 pC N-1, they exhibit immense piezoelectric voltage constants (g33) up to 2 V m N-1. Furthermore, a flexible device prototype is demonstrated that produces open-circuit voltages of nearly 6 V under gentle bending motion. Improvements in peptide selection and device construction promise to further improve the already outstanding voltage response and open the door to numerous practical applications.
2021
Electric fields
Sensors
Piezoelectricity
Ab initio molecular dynamics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/413292
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact