IL-6 detection is highly desirable since can monitor many diseases in humans and assess the response to treatments. Herein, two novel label-free voltammetric immunosensors for rapid and accurate interleukin-6 (IL-6) detection in human serum are presented. The immunosensors are fabricated by immobilising two different IL-6 antibodies, identified as mAb-IL-6 clone-5 and clone-7, on in-house produced screen-printed electrodes modified with inexpensive recycling biochar (Bio-SPEs). To ensure high structural fidelity and performance, an in-depth electrochemical characterization of the layer-by-layer assembly of the immunosensor was conducted by cyclic voltammetry (CV) and sensing was performed using square wave voltammetry (SWV). The two immunosensors showed good analytical performances in human serum, exhibiting a wide linear range (LR) between 26-125 and 30-138 pg/mL, a good limit of detection (LOD) of 4.8 and 5.4 pg/mL and selectivity for IL-6 over other common cytokines, including IL-1? and TNF-?. Performance comparison of IL-6 immunosensors with those of a commercial spectrophotometric ELISA kit (LOD of 20 pg/mL, RSD% of 15%) denotes a better sensitivity and reproducibility of the proposed label-free devices, associated with a reduced detection time (30 min instead of more than 3 h for ELISA test). Furthermore, the proposed immunosensors were successfully applied in blood samples (with only a dilution of 1:100 v/v in PBS and without additional treatments) with good sensitivity (LOD of 14.3 pg/mL) and reproducibility (RSD% < 11%), thus paving the way for their application as viable diagnostic and therapeutic point-of-care tools alternative to the IL-6 detection techniques routinely used (ELISA and Western Blot).

Cost-effective and disposable label-free voltammetric immunosensor for sensitive detection of interleukin-6

Contini G;Signori E
Ultimo
2022

Abstract

IL-6 detection is highly desirable since can monitor many diseases in humans and assess the response to treatments. Herein, two novel label-free voltammetric immunosensors for rapid and accurate interleukin-6 (IL-6) detection in human serum are presented. The immunosensors are fabricated by immobilising two different IL-6 antibodies, identified as mAb-IL-6 clone-5 and clone-7, on in-house produced screen-printed electrodes modified with inexpensive recycling biochar (Bio-SPEs). To ensure high structural fidelity and performance, an in-depth electrochemical characterization of the layer-by-layer assembly of the immunosensor was conducted by cyclic voltammetry (CV) and sensing was performed using square wave voltammetry (SWV). The two immunosensors showed good analytical performances in human serum, exhibiting a wide linear range (LR) between 26-125 and 30-138 pg/mL, a good limit of detection (LOD) of 4.8 and 5.4 pg/mL and selectivity for IL-6 over other common cytokines, including IL-1? and TNF-?. Performance comparison of IL-6 immunosensors with those of a commercial spectrophotometric ELISA kit (LOD of 20 pg/mL, RSD% of 15%) denotes a better sensitivity and reproducibility of the proposed label-free devices, associated with a reduced detection time (30 min instead of more than 3 h for ELISA test). Furthermore, the proposed immunosensors were successfully applied in blood samples (with only a dilution of 1:100 v/v in PBS and without additional treatments) with good sensitivity (LOD of 14.3 pg/mL) and reproducibility (RSD% < 11%), thus paving the way for their application as viable diagnostic and therapeutic point-of-care tools alternative to the IL-6 detection techniques routinely used (ELISA and Western Blot).
2022
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
FARMACOLOGIA TRASLAZIONALE - IFT
Interleukin-6
Green-nanocarbon Biochar
Label-free immunosensor
Point-of-care device
Electrochemical immunosensor
File in questo prodotto:
File Dimensione Formato  
Signori_BiosensBioelectr_2022.pdf

solo utenti autorizzati

Descrizione: Articolo pubblicato - main article
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.42 MB
Formato Adobe PDF
2.42 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/413318
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 42
social impact