hiral information transfer is crucial to design new functions like, for instance, sensing through chiroptical probes in which the input is readout as a consequence of a chiral recognition event. Herein, we report lanthanide quadruple-stranded helicates [Ln2L4]2- that show a guest-to-host chirality transfer. As confirmed by X-ray diffraction (XRD) and density functional theory (DFT) calculations, these cages are present in solution as an equilibrating racemic mixture of left- and right-handed helicates. The helicates adapt their helical conformation by encapsulation of a chiral guest enabling also straightforward enantiomeric excess determination. Asymmetric induction is demonstrated by circular dichroism (CD) and circularly polarized luminescence (CPL), and a helicity inversion mechanism based on a Bailar twist is proposed and studied by DFT calculations. The presented research contributes to the design of helicates with a unique combination of confined cavities, adaptive chirality, and peculiar luminescent properties, finding applications toward the development of optical probes for selective chiral sensing via molecular recognition.

Adaptive helicity and chiral recognition in bright europium quadruple-stranded helicates induced by host-guest interaction

Rancan M;Seraglia R;Bottaro G;Armelao L
2022

Abstract

hiral information transfer is crucial to design new functions like, for instance, sensing through chiroptical probes in which the input is readout as a consequence of a chiral recognition event. Herein, we report lanthanide quadruple-stranded helicates [Ln2L4]2- that show a guest-to-host chirality transfer. As confirmed by X-ray diffraction (XRD) and density functional theory (DFT) calculations, these cages are present in solution as an equilibrating racemic mixture of left- and right-handed helicates. The helicates adapt their helical conformation by encapsulation of a chiral guest enabling also straightforward enantiomeric excess determination. Asymmetric induction is demonstrated by circular dichroism (CD) and circularly polarized luminescence (CPL), and a helicity inversion mechanism based on a Bailar twist is proposed and studied by DFT calculations. The presented research contributes to the design of helicates with a unique combination of confined cavities, adaptive chirality, and peculiar luminescent properties, finding applications toward the development of optical probes for selective chiral sensing via molecular recognition.
2022
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
brightness
chirality recognition
chirality transfer
CPL
europium
helicates
helicity inversion
host-guest
lanthanide
luminescence
File in questo prodotto:
File Dimensione Formato  
prod_471625-doc_191659.pdf

accesso aperto

Descrizione: Adaptive helicity and chiral recognition in bright europium quadruple-stranded helicates induced by host-guest interaction
Tipologia: Versione Editoriale (PDF)
Dimensione 3.62 MB
Formato Adobe PDF
3.62 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/413408
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 35
social impact