The thermoelectric behavior and stability of Cu2SnS3 (CTS) has been investigated in relation to different preparations and sintering conditions, leading to different microstructures and porosities. The studied system is CTS in its cubic polymorph, produced in powder form via a bottom-up approach based on high-energy reactive milling. The as-milled powder was sintered in two batches with different synthesis conditions to produce bulk CTS samples: manual cold pressing followed by traditional sintering (TS), or open die pressing (ODP). Despite the significant differences in densities, ~75% and ~90% of the theoretical density for TS and ODP, respectively, we observed no significant difference in electrical transport. The stable, best performing TS samples reached zT ~0.45, above 700 K, whereas zT reached ~0.34 for the best performing ODP in the same conditions. The higher zT of the TS sintered sample is due to the ultra-low thermal conductivity (? ~0.3-0.2 W/mK), three-fold lower than ODP in the entire measured temperature range. The effect of porosity and production conditions on the transport properties is highlighted, which could pave the way to produce high-performing TE materials. © 2022 by the authors.

Effects of Preparation Procedures and Porosity on Thermoelectric Bulk Samples of Cu2SnS3 (CTS)

Fanciulli C;
2022

Abstract

The thermoelectric behavior and stability of Cu2SnS3 (CTS) has been investigated in relation to different preparations and sintering conditions, leading to different microstructures and porosities. The studied system is CTS in its cubic polymorph, produced in powder form via a bottom-up approach based on high-energy reactive milling. The as-milled powder was sintered in two batches with different synthesis conditions to produce bulk CTS samples: manual cold pressing followed by traditional sintering (TS), or open die pressing (ODP). Despite the significant differences in densities, ~75% and ~90% of the theoretical density for TS and ODP, respectively, we observed no significant difference in electrical transport. The stable, best performing TS samples reached zT ~0.45, above 700 K, whereas zT reached ~0.34 for the best performing ODP in the same conditions. The higher zT of the TS sintered sample is due to the ultra-low thermal conductivity (? ~0.3-0.2 W/mK), three-fold lower than ODP in the entire measured temperature range. The effect of porosity and production conditions on the transport properties is highlighted, which could pave the way to produce high-performing TE materials. © 2022 by the authors.
2022
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
Chalcogenide
Copper tin sulfide
CTS
Cu2SnS3
Material production
Porosity
Porous thermoelectric materials
Thermal stability
File in questo prodotto:
File Dimensione Formato  
prod_471637-doc_191667.pdf

accesso aperto

Descrizione: Effects of Preparation Procedures and Porosity on Thermoelectric Bulk Samples of Cu2SnS3 (CTS)
Tipologia: Versione Editoriale (PDF)
Dimensione 9.51 MB
Formato Adobe PDF
9.51 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/413417
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact