Interest in layered van der Waals semiconductor gallium monosulfide (GaS) is growing rapidly because of its wide band gap value between those of two-dimensional transition metal dichalcogenides and of insulating layered materials such as hexagonal boron nitride. For the design of envisaged optoelectronic, photocatalytic and photonic applications of GaS, the knowledge of its dielectric function is fundamental. Here we present a combined theoretical and experimental investigation of the dielectric function of crystalline 2H-GaS from monolayer to bulk. Spectroscopic imaging ellipsometry with micron resolution measurements are corroborated by first principle calculations of the electronic structure and dielectric function. We further demonstrate and validate the applicability of the established dielectric function to the analysis of the optical response of c-axis oriented GaS layers grown by chemical vapor deposition (CVD). These optical results can guide the design of novel, to our knowledge, optoelectronic and photonic devices based on low-dimensional GaS.

Layered gallium sulfide optical properties from monolayer to CVD crystalline thin films

Dicorato S;Giangregorio MM;Palumbo F;Losurdo M
2022

Abstract

Interest in layered van der Waals semiconductor gallium monosulfide (GaS) is growing rapidly because of its wide band gap value between those of two-dimensional transition metal dichalcogenides and of insulating layered materials such as hexagonal boron nitride. For the design of envisaged optoelectronic, photocatalytic and photonic applications of GaS, the knowledge of its dielectric function is fundamental. Here we present a combined theoretical and experimental investigation of the dielectric function of crystalline 2H-GaS from monolayer to bulk. Spectroscopic imaging ellipsometry with micron resolution measurements are corroborated by first principle calculations of the electronic structure and dielectric function. We further demonstrate and validate the applicability of the established dielectric function to the analysis of the optical response of c-axis oriented GaS layers grown by chemical vapor deposition (CVD). These optical results can guide the design of novel, to our knowledge, optoelectronic and photonic devices based on low-dimensional GaS.
2022
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
Istituto di Nanotecnologia - NANOTEC
ABSORPTION EDGE
GASE
PHOTODETECTORS
EMISSION
GAP
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/413565
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact