The detection of bioelectric signals is usually based on an electrode-skin contact that is often mediated by a layer of conductive gel. This interface produces a DC voltage (half-cell potential) and a random noise voltage whose relationship is not well known. The first may cause amplifier saturation and the second posits a limit to the detection of small signals. This work investigates the mechanisms of generation of these two voltages in the simpler case of a metal-electrolyte junction and finds a theoretical expression for both, under a few simplifying hypotheses. An expression is found that relates the two voltages to the ionic concentration and to the parameters defining the dynamics of the adsorption-desorption phenomena taking place at the interface. A relationship is found between the two voltages that is in qualitative agreement with experimental findings reported in the literature. This theoretical background provides a basis for further investigation of the metal-gel and of the gel-skin interfaces not addressed in this work.

Half-cell and noise voltages at a metal-electrode and dilute solution interface

Evangelista LR;
2022

Abstract

The detection of bioelectric signals is usually based on an electrode-skin contact that is often mediated by a layer of conductive gel. This interface produces a DC voltage (half-cell potential) and a random noise voltage whose relationship is not well known. The first may cause amplifier saturation and the second posits a limit to the detection of small signals. This work investigates the mechanisms of generation of these two voltages in the simpler case of a metal-electrolyte junction and finds a theoretical expression for both, under a few simplifying hypotheses. An expression is found that relates the two voltages to the ionic concentration and to the parameters defining the dynamics of the adsorption-desorption phenomena taking place at the interface. A relationship is found between the two voltages that is in qualitative agreement with experimental findings reported in the literature. This theoretical background provides a basis for further investigation of the metal-gel and of the gel-skin interfaces not addressed in this work.
2022
Istituto dei Sistemi Complessi - ISC
adsorbates and surfactants; Brownian motion; fluctuation phenomena; surface effects
File in questo prodotto:
File Dimensione Formato  
prod_470334-doc_190739.pdf

solo utenti autorizzati

Descrizione: Half-cell and noise voltages at a metal-electrode and dilute solution interface
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 736.72 kB
Formato Adobe PDF
736.72 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/413577
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact