The present investigation concerns the potentiality of Rhodopseudomonas sp. cells to produce clean energy such as molecular hydrogen (H2). The abovementioned goal could be reached by improving the capability of purple non-sulfur bacteria to produce H2 via a photofermentative process through the enzyme nitrogenase. Rhodopseudomonas sp. cells were immobilized in calcium alginate gel beads and cultured in a cylindrical photobioreactor at a working volume of 0.22 L. The semi-continuous process, which lasted for 11 days, was interspersed with the washing of the beads with the aim of increasing the H2 production rate. The maximum H2 production rate reached 5.25 ± 0.93 mL/h with a total output of 505 mL. The productivity was 40.9 ?L (of H2)/mg (of cells)/hor 10.2 mL (of H2)/L (of culture)/h with a light conversion efficiency of 1.20%.
Hydrogen Production by Immobilized Rhodopseudomonas sp. Cells in Calcium Alginate Beads
E. Touloupakis;P. Carlozzi;
2022
Abstract
The present investigation concerns the potentiality of Rhodopseudomonas sp. cells to produce clean energy such as molecular hydrogen (H2). The abovementioned goal could be reached by improving the capability of purple non-sulfur bacteria to produce H2 via a photofermentative process through the enzyme nitrogenase. Rhodopseudomonas sp. cells were immobilized in calcium alginate gel beads and cultured in a cylindrical photobioreactor at a working volume of 0.22 L. The semi-continuous process, which lasted for 11 days, was interspersed with the washing of the beads with the aim of increasing the H2 production rate. The maximum H2 production rate reached 5.25 ± 0.93 mL/h with a total output of 505 mL. The productivity was 40.9 ?L (of H2)/mg (of cells)/hor 10.2 mL (of H2)/L (of culture)/h with a light conversion efficiency of 1.20%.File | Dimensione | Formato | |
---|---|---|---|
prod_472991-doc_192679.pdf
accesso aperto
Descrizione: Hydrogen Production by Immobilized Rhodopseudomonas sp. Cells in Calcium Alginate Beads
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.26 MB
Formato
Adobe PDF
|
1.26 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.