We theoretically investigate superradiance effects in quantum field theories in curved space-times by proposing an analog model based on Bose-Einstein condensates subject to a synthetic vector potential. The breaking of the irrotationality constraint of superfluids allows us to study superradiance in simple planar geometries and obtain intuitive insight into the amplified scattering processes at ergosurfaces. When boundary conditions are modified to allow for reflections, dynamical instabilities are found, similar to the ones of ergoregions in rotating space-times. Their stabilization by horizons in black hole geometries is discussed. All these phenomena are reinterpreted through an exact mapping with the physics of one-dimensional relativistic charged scalar fields in electrostatic potentials. Our study provides a deeper understanding of the basic mechanisms of superradiance: By disentangling the different ingredients at play, it shines light on some misconceptions on the role of dissipation and horizons and on the competition between superradiant scattering and instabilities.

Understanding superradiant phenomena with synthetic vector potentials in atomic Bose-Einstein condensates

Giacomelli L;Carusotto I
2021

Abstract

We theoretically investigate superradiance effects in quantum field theories in curved space-times by proposing an analog model based on Bose-Einstein condensates subject to a synthetic vector potential. The breaking of the irrotationality constraint of superfluids allows us to study superradiance in simple planar geometries and obtain intuitive insight into the amplified scattering processes at ergosurfaces. When boundary conditions are modified to allow for reflections, dynamical instabilities are found, similar to the ones of ergoregions in rotating space-times. Their stabilization by horizons in black hole geometries is discussed. All these phenomena are reinterpreted through an exact mapping with the physics of one-dimensional relativistic charged scalar fields in electrostatic potentials. Our study provides a deeper understanding of the basic mechanisms of superradiance: By disentangling the different ingredients at play, it shines light on some misconceptions on the role of dissipation and horizons and on the competition between superradiant scattering and instabilities.
2021
Istituto Nazionale di Ottica - INO
energy
File in questo prodotto:
File Dimensione Formato  
prod_473305-doc_192836.pdf

solo utenti autorizzati

Descrizione: Understanding superradiant phenomena with synthetic vector potentials in atomic Bose-Einstein condensates
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.15 MB
Formato Adobe PDF
3.15 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/413720
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 14
social impact