Infant cry is one of the first distinctive and informative life signals observed after birth. Neonatologists and automatic assistive systems can analyse infant cry to early-detect pathologies. These analyses extensively use reference expert-curated databases containing annotated infant-cry audio samples. However, these databases are not publicly accessible because of their sensitive data. Moreover, the recorded data can under-represent specific phenomena or the operational conditions required by other medical teams. Additionally, building these databases requires significant investments that few hospitals can afford. This paper describes an open-source workflow for infant-cry detection, which identifies audio segments containing high-quality infant-cry samples with no other overlapping audio events (e.g. machine noise or adult speech). It requires minimal training because it trains an LSTM-with-self-attention model on infant-cry samples automatically detected from the recorded audio through cluster analysis and HMM classification. The audio signal processing uses energy and intonation acoustic features from 100-ms segments to improve spectral robustness to noise. The workflow annotates the input audio with intervals containing infant-cry samples suited for populating a database for neonatological and early diagnosis studies. On 16 min of hospital phone-audio recordings, it reached sufficient infant-cry detection accuracy in 3 neonatal care environments (nursery--69%, sub-intensive--82%, intensive--77%) involving 20 infants subject to heterogeneous cry stimuli, and had substantial agreement with an expert's annotation. Our workflow is a cost-effective solution, particularly suited for a sub-intensive care environment, scalable to monitor from one to many infants. It allows a hospital to build and populate an extensive high-quality infant-cry database with a minimal investment.

A self-training automatic infant-cry detector

Coro G;
2023

Abstract

Infant cry is one of the first distinctive and informative life signals observed after birth. Neonatologists and automatic assistive systems can analyse infant cry to early-detect pathologies. These analyses extensively use reference expert-curated databases containing annotated infant-cry audio samples. However, these databases are not publicly accessible because of their sensitive data. Moreover, the recorded data can under-represent specific phenomena or the operational conditions required by other medical teams. Additionally, building these databases requires significant investments that few hospitals can afford. This paper describes an open-source workflow for infant-cry detection, which identifies audio segments containing high-quality infant-cry samples with no other overlapping audio events (e.g. machine noise or adult speech). It requires minimal training because it trains an LSTM-with-self-attention model on infant-cry samples automatically detected from the recorded audio through cluster analysis and HMM classification. The audio signal processing uses energy and intonation acoustic features from 100-ms segments to improve spectral robustness to noise. The workflow annotates the input audio with intervals containing infant-cry samples suited for populating a database for neonatological and early diagnosis studies. On 16 min of hospital phone-audio recordings, it reached sufficient infant-cry detection accuracy in 3 neonatal care environments (nursery--69%, sub-intensive--82%, intensive--77%) involving 20 infants subject to heterogeneous cry stimuli, and had substantial agreement with an expert's annotation. Our workflow is a cost-effective solution, particularly suited for a sub-intensive care environment, scalable to monitor from one to many infants. It allows a hospital to build and populate an extensive high-quality infant-cry database with a minimal investment.
2023
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Artificial intelligence
Neonatology
Infant-cry detection
Audio processing
Machine learning
Early diagnosis
File in questo prodotto:
File Dimensione Formato  
prod_475629-doc_194267.pdf

accesso aperto

Descrizione: postprint - A self-training automatic infant-cry detector
Tipologia: Versione Editoriale (PDF)
Dimensione 2.24 MB
Formato Adobe PDF
2.24 MB Adobe PDF Visualizza/Apri
prod_475629-doc_194440.pdf

accesso aperto

Descrizione: A self-training automatic infant-cry detector
Tipologia: Versione Editoriale (PDF)
Dimensione 2.23 MB
Formato Adobe PDF
2.23 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/413801
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact