In this note, we consider generalizations of the Cucker-Smale dynamical system and we derive rigorously in Wasserstein's type topologies the mean-field limit (and propagation of chaos) to the Vlasov-type equation introduced in [13]. Unlike previous results on the Cucker-Smale model, our approach is not based on the empirical measures, but, using an Eulerian point of view introduced in [9] in the Hamiltonian setting, we show the limit providing explicit constants. Moreover, for non strictly Cucker-Smale particles dynamics, we also give an insight on what induces a flocking behavior of the solution to the Vlasov equation to the - unknown a priori - flocking properties of the original particle system.

On the mean field limit for Cucker-Smale models

Natalini, Roberto;
2022

Abstract

In this note, we consider generalizations of the Cucker-Smale dynamical system and we derive rigorously in Wasserstein's type topologies the mean-field limit (and propagation of chaos) to the Vlasov-type equation introduced in [13]. Unlike previous results on the Cucker-Smale model, our approach is not based on the empirical measures, but, using an Eulerian point of view introduced in [9] in the Hamiltonian setting, we show the limit providing explicit constants. Moreover, for non strictly Cucker-Smale particles dynamics, we also give an insight on what induces a flocking behavior of the solution to the Vlasov equation to the - unknown a priori - flocking properties of the original particle system.
2022
Istituto Applicazioni del Calcolo ''Mauro Picone''
Cucker-Smale system, flocking properties, mean-field limit, Vlasov equations, Wasserstein topology
File in questo prodotto:
File Dimensione Formato  
prod_475638-doc_194275.pdf

solo utenti autorizzati

Descrizione: On the mean field limit for Cucker-Smale models
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 366.68 kB
Formato Adobe PDF
366.68 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2011.12584v2.pdf

accesso aperto

Descrizione: file pdf del preprint
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 247.33 kB
Formato Adobe PDF
247.33 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/413810
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 9
social impact