In this note, we consider generalizations of the Cucker-Smale dynamical system and we derive rigorously in Wasserstein's type topologies the mean-field limit (and propagation of chaos) to the Vlasov-type equation introduced in [13]. Unlike previous results on the Cucker-Smale model, our approach is not based on the empirical measures, but, using an Eulerian point of view introduced in [9] in the Hamiltonian setting, we show the limit providing explicit constants. Moreover, for non strictly Cucker-Smale particles dynamics, we also give an insight on what induces a flocking behavior of the solution to the Vlasov equation to the - unknown a priori - flocking properties of the original particle system.
On the mean field limit for Cucker-Smale models
Natalini, Roberto;
2022
Abstract
In this note, we consider generalizations of the Cucker-Smale dynamical system and we derive rigorously in Wasserstein's type topologies the mean-field limit (and propagation of chaos) to the Vlasov-type equation introduced in [13]. Unlike previous results on the Cucker-Smale model, our approach is not based on the empirical measures, but, using an Eulerian point of view introduced in [9] in the Hamiltonian setting, we show the limit providing explicit constants. Moreover, for non strictly Cucker-Smale particles dynamics, we also give an insight on what induces a flocking behavior of the solution to the Vlasov equation to the - unknown a priori - flocking properties of the original particle system.File | Dimensione | Formato | |
---|---|---|---|
prod_475638-doc_194275.pdf
solo utenti autorizzati
Descrizione: On the mean field limit for Cucker-Smale models
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
366.68 kB
Formato
Adobe PDF
|
366.68 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2011.12584v2.pdf
accesso aperto
Descrizione: file pdf del preprint
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
247.33 kB
Formato
Adobe PDF
|
247.33 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.