Using a mathematical model of concrete carbonation that describes the variation in porosity as a consequence of the involved chemical reactions, we both validated and calibrated the related numerical algorithm of degradation. Once calibrated, a simulation algorithm was used as a forecasting tool for predicting the effects on the porosity of concrete exposed to increasing levels of CO2 emissions, as well as to rising temperatures. Taking into account future projections of environmental modifications deriving from climate changes, some scenarios were produced numerically by the mathematical algorithm that showed the effects of different pollution levels and global warming on the porosity of Portland cement in a time window of years. Finally, a theoretical study on the effects of pollution levels on the carbonation constant determining the advancement in the carbonation front was carried out for the analyzed scenarios.
Climate Change Effects on Carbonation Process: A Scenario-Based Study
Bretti
Primo
;CeseriUltimo
;
2023
Abstract
Using a mathematical model of concrete carbonation that describes the variation in porosity as a consequence of the involved chemical reactions, we both validated and calibrated the related numerical algorithm of degradation. Once calibrated, a simulation algorithm was used as a forecasting tool for predicting the effects on the porosity of concrete exposed to increasing levels of CO2 emissions, as well as to rising temperatures. Taking into account future projections of environmental modifications deriving from climate changes, some scenarios were produced numerically by the mathematical algorithm that showed the effects of different pollution levels and global warming on the porosity of Portland cement in a time window of years. Finally, a theoretical study on the effects of pollution levels on the carbonation constant determining the advancement in the carbonation front was carried out for the analyzed scenarios.File | Dimensione | Formato | |
---|---|---|---|
heritage-06-00012-v2.pdf
accesso aperto
Licenza:
Creative commons
Dimensione
1.54 MB
Formato
Adobe PDF
|
1.54 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.