In this paper, we consider the isoperimetric problem in the space R with a density. Our result states that, if the density f is lower semi-continuous and converges to a limit a> 0 at infinity, with f<= a far from the origin, then isoperimetric sets exist for all volumes. Several known results or counterexamples show that the present result is essentially sharp. The special case of our result for radial and increasing densities positively answers a conjecture of Morgan and Pratelli (Ann Glob Anal Geom 43(4):331-365, 2013.

Existence of Isoperimetric Sets with Densities "Converging from Below" on RN

Franzina G;
2017

Abstract

In this paper, we consider the isoperimetric problem in the space R with a density. Our result states that, if the density f is lower semi-continuous and converges to a limit a> 0 at infinity, with f<= a far from the origin, then isoperimetric sets exist for all volumes. Several known results or counterexamples show that the present result is essentially sharp. The special case of our result for radial and increasing densities positively answers a conjecture of Morgan and Pratelli (Ann Glob Anal Geom 43(4):331-365, 2013.
2017
Istituto Applicazioni del Calcolo ''Mauro Picone''
Isoperimetric problem
Perimeter with density
Existence of optimal sets
File in questo prodotto:
File Dimensione Formato  
DepFraPra_17.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Altro tipo di licenza
Dimensione 518.69 kB
Formato Adobe PDF
518.69 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/413883
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? ND
social impact