A highly nonlinear eigenvalue problem is studied in a Sobolev space with variable exponent. The Euler-Lagrange equation for the minimization of a Rayleigh quotient of two Luxemburg norms is derived. The asymptotic case with a "variable infinity" is treated. Local uniqueness is proved for the viscosity solutions.
An eigenvalue problem with variable exponents
Franzina G
;
2013
Abstract
A highly nonlinear eigenvalue problem is studied in a Sobolev space with variable exponent. The Euler-Lagrange equation for the minimization of a Rayleigh quotient of two Luxemburg norms is derived. The asymptotic case with a "variable infinity" is treated. Local uniqueness is proved for the viscosity solutions.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
fra-lqv_13.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Altro tipo di licenza
Dimensione
450.29 kB
Formato
Adobe PDF
|
450.29 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


