Antimony selenide (Sb2Se3) is today one of the most promising alternative materials for p-type absorbers in thin-film photovoltaics, with an optimal band-gap and a very high absorption coefficient. However, its crystal structure is extremely anisotropic and its natural carrier density is generally very low. Sb2Se3 thin films have been deposited by two different high-energy techniques: magnetron RF-sputtering (MS) and low-temperature pulsed electron deposition (LT-PED). Their dominant crystallographic orientations have been studied as a function of deposition parameters and of the different used substrates, while complete solar cells have been subsequently made with the obtained samples to confirm the dependence of conversion efficiencies on the observed (Sb4Se6)n ribbon orientation. Cu-doped Sb2Se3 thin-films have been also preliminary prepared in order to evaluate a possible route to further improve the free charge-carrier density and the cell performance.

Sb2Se3: a possible future for thin-film photovoltaics?

Spaggiari G;Rampino S;
2022

Abstract

Antimony selenide (Sb2Se3) is today one of the most promising alternative materials for p-type absorbers in thin-film photovoltaics, with an optimal band-gap and a very high absorption coefficient. However, its crystal structure is extremely anisotropic and its natural carrier density is generally very low. Sb2Se3 thin films have been deposited by two different high-energy techniques: magnetron RF-sputtering (MS) and low-temperature pulsed electron deposition (LT-PED). Their dominant crystallographic orientations have been studied as a function of deposition parameters and of the different used substrates, while complete solar cells have been subsequently made with the obtained samples to confirm the dependence of conversion efficiencies on the observed (Sb4Se6)n ribbon orientation. Cu-doped Sb2Se3 thin-films have been also preliminary prepared in order to evaluate a possible route to further improve the free charge-carrier density and the cell performance.
2022
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
Photovoltaics
Sb2Se3
Thin films
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/413941
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact