The impacts of hailstorms on human beings and structures and the associated high economic costs have raised significant interest in studying storm mechanisms and climatology, thus producing a substantial amount of literature in the field. To contribute to this effort, we have explored the hail frequency in the Mediterranean basin during the last two decades (1999-2021) on the basis of hail occurrences derived from the observations of the microwave radiometers on board satellites of the Global Precipitation Measurement Constellation (GPM-C) from 2014 (date of GPM Core Observatory launch) onwards and merging multiple other satellite platforms prior to 2014. According to the MWCC-H method, two hail event categories (hail and super hail) are identified, and their spatiotemporal distributions are evaluated to identify the hail development areas in the Mediterranean and the corresponding monthly climatology of hail occurrences. Our results show that the northern sectors of the domain (France, Alpine Region, Po Valley, and Central-Eastern Europe) tend to be hit by hailstorms from June to August, while the central sectors (from Spain to Turkey) are more affected as autumn approaches. The trend analysis shows that the mean number of hail events over the entire domain tends to substantially increase, showing a higher increment during 2010-2021 than during 1999-2010. This behavior was particularly enhanced over Southern Italy and the Balkans. Our findings point to the existence of "sub-hotspots", i.e., Mediterranean regions most susceptible to hail events and thus possibly more vulnerable to climate change effects.

Hail Climatology in the Mediterranean Basin Using the GPM Constellation (1999-2021)

Sante Laviola;Giulio Monte;Elsa Cattani;Vincenzo Levizzani
2022

Abstract

The impacts of hailstorms on human beings and structures and the associated high economic costs have raised significant interest in studying storm mechanisms and climatology, thus producing a substantial amount of literature in the field. To contribute to this effort, we have explored the hail frequency in the Mediterranean basin during the last two decades (1999-2021) on the basis of hail occurrences derived from the observations of the microwave radiometers on board satellites of the Global Precipitation Measurement Constellation (GPM-C) from 2014 (date of GPM Core Observatory launch) onwards and merging multiple other satellite platforms prior to 2014. According to the MWCC-H method, two hail event categories (hail and super hail) are identified, and their spatiotemporal distributions are evaluated to identify the hail development areas in the Mediterranean and the corresponding monthly climatology of hail occurrences. Our results show that the northern sectors of the domain (France, Alpine Region, Po Valley, and Central-Eastern Europe) tend to be hit by hailstorms from June to August, while the central sectors (from Spain to Turkey) are more affected as autumn approaches. The trend analysis shows that the mean number of hail events over the entire domain tends to substantially increase, showing a higher increment during 2010-2021 than during 1999-2010. This behavior was particularly enhanced over Southern Italy and the Balkans. Our findings point to the existence of "sub-hotspots", i.e., Mediterranean regions most susceptible to hail events and thus possibly more vulnerable to climate change effects.
2022
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
Dipartimento di Scienze del Sistema Terra e Tecnologie per l'Ambiente - DSSTTA
hailstorms, climatology, Mediterranean, GPM passive microwaves
File in questo prodotto:
File Dimensione Formato  
Laviola_remotesensing-2022_grandine.pdf

accesso aperto

Descrizione: versione editoriale presente sul sito della rivista
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 7.38 MB
Formato Adobe PDF
7.38 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/414036
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact