How ectothermic animals will cope with global warming is a critical determinant of the ecological impacts of climate change. There has been extensive study of upper thermal tolerance limits among fish species but how intraspecific variation in tolerance may be affected by habitat characteristics and evolutionary history has not been considered. Intraspecific variation is a primary determinant of species vulnerability to climate change, with implications for global patterns of impacts of ongoing warming. Using published critical thermal maximum (CT) data on 203 fish species, we found that intraspecific variation in upper thermal tolerance varies according to a species' latitude and evolutionary history. Overall, tropical species show a lower intraspecific variation in thermal tolerance than temperate species. Notably, freshwater tropical species have a lower variation in tolerance than freshwater temperate species, which implies increased vulnerability to impacts of thermal stress. The extent of variation in CT among fish species has a strong phylogenetic signal, which may indicate a constraint on evolvability to rising temperatures in tropical fishes. That is, in addition to living closer to their upper thermal limits, tropical species may have higher sensitivity and lower adaptability to global warming compared to temperate counterparts. This is evidence that freshwater tropical fish communities, worldwide, are especially vulnerable to ongoing climate change.

Intraspecific variation in thermal tolerance differs between tropical and temperate fishes

Marras S;Domenici P
2021

Abstract

How ectothermic animals will cope with global warming is a critical determinant of the ecological impacts of climate change. There has been extensive study of upper thermal tolerance limits among fish species but how intraspecific variation in tolerance may be affected by habitat characteristics and evolutionary history has not been considered. Intraspecific variation is a primary determinant of species vulnerability to climate change, with implications for global patterns of impacts of ongoing warming. Using published critical thermal maximum (CT) data on 203 fish species, we found that intraspecific variation in upper thermal tolerance varies according to a species' latitude and evolutionary history. Overall, tropical species show a lower intraspecific variation in thermal tolerance than temperate species. Notably, freshwater tropical species have a lower variation in tolerance than freshwater temperate species, which implies increased vulnerability to impacts of thermal stress. The extent of variation in CT among fish species has a strong phylogenetic signal, which may indicate a constraint on evolvability to rising temperatures in tropical fishes. That is, in addition to living closer to their upper thermal limits, tropical species may have higher sensitivity and lower adaptability to global warming compared to temperate counterparts. This is evidence that freshwater tropical fish communities, worldwide, are especially vulnerable to ongoing climate change.
2021
Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino - IAS
Global warming
Thermal tolerance
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/414068
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? ND
social impact