Lithium-ion batteries have the advantages of high energy density, high charge-discharge efficiency, low self-discharge effect and long cycle life that make them suitable in both stationary and mobile applications. They are the most widely used solution in the field of electric vehicles and are increasing their application for stationary applications. Both the life-time and performances are negatively affected by high temperatures so the prevision of the thermal behaviour is a crucial step in the battery modelling. Based on an experimental setup, a simplified thermal model was developed to estimate the surface temperatures of a lithium titanate cell from current and voltage measurements. The model was implemented in the COMSOL Multiphysics® Finite Element code. Charge and discharge cycles of the cell were performed and the predicted heat generation used as input of the thermal model. The calibrated model was lastly used to assess two thermal battery management (TBM) cooling systems, in this case applied to a single cell: a passive phase change material (PCM) system and a hybrid PCM/water system. The effects of the PCM thickness and velocity inlet of the water on the cell temperature were investigated. Results showed that, in comparison to the passively air cooled cell, both systems decreased the maximum surface temperatures, thus improving the uniformity of the temperature distribution and keeping the battery in a safe temperature range.

Numerical assessment of cooling systems for thermal management of lithium-ion batteries

Davide Aloisio;Valeria Palomba;Andrea Frazzica;Giovanni Brunaccini;Francesco Sergi
2022

Abstract

Lithium-ion batteries have the advantages of high energy density, high charge-discharge efficiency, low self-discharge effect and long cycle life that make them suitable in both stationary and mobile applications. They are the most widely used solution in the field of electric vehicles and are increasing their application for stationary applications. Both the life-time and performances are negatively affected by high temperatures so the prevision of the thermal behaviour is a crucial step in the battery modelling. Based on an experimental setup, a simplified thermal model was developed to estimate the surface temperatures of a lithium titanate cell from current and voltage measurements. The model was implemented in the COMSOL Multiphysics® Finite Element code. Charge and discharge cycles of the cell were performed and the predicted heat generation used as input of the thermal model. The calibrated model was lastly used to assess two thermal battery management (TBM) cooling systems, in this case applied to a single cell: a passive phase change material (PCM) system and a hybrid PCM/water system. The effects of the PCM thickness and velocity inlet of the water on the cell temperature were investigated. Results showed that, in comparison to the passively air cooled cell, both systems decreased the maximum surface temperatures, thus improving the uniformity of the temperature distribution and keeping the battery in a safe temperature range.
2022
Istituto di Tecnologie Avanzate per l'Energia - ITAE
Li-on battery
thermal management
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/414125
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact