Keratin is a biocompatible and biodegradable protein as the main component of wool and animal hair fibers. Keratin-based materials support fibroblasts and osteoblasts growth. Keratin has been extracted by sulphitolysis, a green method (no harmful chemicals) with a yield of 38-45%. Keratin has been processed into nanofibers from its solutions by electrospinning. Electrospinning is a versatile and easy-to-use technique to generate nanofibers. It is an eco-friendly and economical method for the production of randomly and uniaxially oriented polymeric nanofibers. Thanks to their high specific surface area, nanofibers have great potential in the biomedical field. Keratin nanofibers have received significant attention in biomedical applications, such as tissue engineering and cell growth scaffolds, for their biocompatibility and bio-functionality. Accordingly, we propose an extensive overview of recent studies focused on the optimization of keratinbased nanofibers, emphasizing their peculiar functions for cell interactions and the role of additive phases in blends or composite systems to particularize them as a function of specific applications (i.e., antibacterial).

Wool Keratin Nanofibers for Bioinspired and Sustainable Use in Biomedical Field

D. O. Sanchez Ramirez
;
C. Vineis
;
Iriczalli Cruz Maya;C. Tonetti;V. Guarino;A. Varesano
2023

Abstract

Keratin is a biocompatible and biodegradable protein as the main component of wool and animal hair fibers. Keratin-based materials support fibroblasts and osteoblasts growth. Keratin has been extracted by sulphitolysis, a green method (no harmful chemicals) with a yield of 38-45%. Keratin has been processed into nanofibers from its solutions by electrospinning. Electrospinning is a versatile and easy-to-use technique to generate nanofibers. It is an eco-friendly and economical method for the production of randomly and uniaxially oriented polymeric nanofibers. Thanks to their high specific surface area, nanofibers have great potential in the biomedical field. Keratin nanofibers have received significant attention in biomedical applications, such as tissue engineering and cell growth scaffolds, for their biocompatibility and bio-functionality. Accordingly, we propose an extensive overview of recent studies focused on the optimization of keratinbased nanofibers, emphasizing their peculiar functions for cell interactions and the role of additive phases in blends or composite systems to particularize them as a function of specific applications (i.e., antibacterial).
2023
Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato - STIIMA (ex ITIA)
Istituto per i Polimeri, Compositi e Biomateriali - IPCB
wool keratin;
electrospinning;
nanofibers;
biocompatible;
biodegradable
File in questo prodotto:
File Dimensione Formato  
jfb-14-00005-with-cover.pdf

accesso aperto

Descrizione: fulltext with cover
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.62 MB
Formato Adobe PDF
1.62 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/414196
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? ND
social impact