Despite the need for preserving the carbon pools in fire-prone southern European landscapes, emission reductions from wildfire risk mitigation are still poorly understood. In this study, we estimated expected carbon emissions and carbon credits from fuel management projects ongoing in Catalonia (Spain). The planning areas encompass about 1000 km and represent diverse fire regimes and Mediterranean forest ecosystems. We first modeled the burn probability assuming extreme weather conditions and historical fire ignition patterns. Stand-level wildfire exposure was then coupled with fuel consumption estimates to assess expected carbon emissions. Finally, we estimated treatment cost-efficiency and carbon credits for each fuel management plan. Landscape-scale average emissions ranged between 0.003 and 0.070 T CO year ha . Fuel treatments in high emission hotspots attained reductions beyond 0.06 T CO year per treated ha. Thus, implementing carbon credits could potentially finance up to 14% of the treatment implementation costs in high emission areas. We discuss how stand conditions, fire regimes, and treatment costs determine the treatment cost-efficiency and long-term carbon-sink capacity. Our work may serve as a preliminary step for developing a carbon-credit market and subsidizing wildfire risk management programs in low-revenue Mediterranean forest systems prone to extreme wildfires.

Fostering carbon credits to finance wildfire risk reduction forest management in mediterranean landscapes

Salis M;
2021

Abstract

Despite the need for preserving the carbon pools in fire-prone southern European landscapes, emission reductions from wildfire risk mitigation are still poorly understood. In this study, we estimated expected carbon emissions and carbon credits from fuel management projects ongoing in Catalonia (Spain). The planning areas encompass about 1000 km and represent diverse fire regimes and Mediterranean forest ecosystems. We first modeled the burn probability assuming extreme weather conditions and historical fire ignition patterns. Stand-level wildfire exposure was then coupled with fuel consumption estimates to assess expected carbon emissions. Finally, we estimated treatment cost-efficiency and carbon credits for each fuel management plan. Landscape-scale average emissions ranged between 0.003 and 0.070 T CO year ha . Fuel treatments in high emission hotspots attained reductions beyond 0.06 T CO year per treated ha. Thus, implementing carbon credits could potentially finance up to 14% of the treatment implementation costs in high emission areas. We discuss how stand conditions, fire regimes, and treatment costs determine the treatment cost-efficiency and long-term carbon-sink capacity. Our work may serve as a preliminary step for developing a carbon-credit market and subsidizing wildfire risk management programs in low-revenue Mediterranean forest systems prone to extreme wildfires.
2021
Istituto per la BioEconomia - IBE
wildfire risk
landscape management
ecosystem services
carbon credits
green deal
File in questo prodotto:
File Dimensione Formato  
prod_468479-doc_189550.pdf

accesso aperto

Descrizione: Fostering Carbon Credits to Finance Wildfire Risk Reduction Forest Management in Mediterranean Landscapes
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 5.53 MB
Formato Adobe PDF
5.53 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/414227
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact