Simulations from seven global coupled climate models performed at high and standard resolution as part of the high resolution model intercomparison project (HighResMIP) are analyzed to study deep ocean mixing in the Labrador Sea and the impact of increased horizontal resolution. The representation of convection varies strongly among models. Compared to observations from ARGO-floats and the EN4 data set, most models substantially overestimate deep convection in the Labrador Sea. In four out of five models, all four using the NEMO-ocean model, increasing the ocean resolution from 1° to 1/4° leads to increased deep mixing in the Labrador Sea. Increasing the atmospheric resolution has a smaller effect than increasing the ocean resolution. Simulated convection in the Labrador Sea is mainly governed by the release of heat from the ocean to the atmosphere and by the vertical stratification of the water masses in the Labrador Sea in late autumn. Models with stronger sub-polar gyre circulation have generally higher surface salinity in the Labrador Sea and a deeper convection. While the high-resolution models show more realistic ocean stratification in the Labrador Sea than the standard resolution models, they generally overestimate the convection. The results indicate that the representation of sub-grid scale mixing processes might be imperfect in the models and contribute to the biases in deep convection. Since in more than half of the models, the Labrador Sea convection is important for the Atlantic Meridional Overturning Circulation (AMOC), this raises questions about the future behavior of the AMOC in the models.

Deep mixed ocean volume in the Labrador Sea in HighResMIP models

Meccia Virna L;
2021

Abstract

Simulations from seven global coupled climate models performed at high and standard resolution as part of the high resolution model intercomparison project (HighResMIP) are analyzed to study deep ocean mixing in the Labrador Sea and the impact of increased horizontal resolution. The representation of convection varies strongly among models. Compared to observations from ARGO-floats and the EN4 data set, most models substantially overestimate deep convection in the Labrador Sea. In four out of five models, all four using the NEMO-ocean model, increasing the ocean resolution from 1° to 1/4° leads to increased deep mixing in the Labrador Sea. Increasing the atmospheric resolution has a smaller effect than increasing the ocean resolution. Simulated convection in the Labrador Sea is mainly governed by the release of heat from the ocean to the atmosphere and by the vertical stratification of the water masses in the Labrador Sea in late autumn. Models with stronger sub-polar gyre circulation have generally higher surface salinity in the Labrador Sea and a deeper convection. While the high-resolution models show more realistic ocean stratification in the Labrador Sea than the standard resolution models, they generally overestimate the convection. The results indicate that the representation of sub-grid scale mixing processes might be imperfect in the models and contribute to the biases in deep convection. Since in more than half of the models, the Labrador Sea convection is important for the Atlantic Meridional Overturning Circulation (AMOC), this raises questions about the future behavior of the AMOC in the models.
2021
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
Atlantic meridional overturning circulation
Climate variability
Deep oceanic convection in the Labrador Sea
High resolution global climate modeling
Impact of increasing the resolution in global climate models
File in questo prodotto:
File Dimensione Formato  
s00382-021-05785-x.pdf

accesso aperto

Descrizione: Climate Dynamics (2021) 57:1895–1918 https://doi.org/10.1007/s00382-021-05785-x
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 9.21 MB
Formato Adobe PDF
9.21 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/414272
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? ND
social impact