Glycosphingolipids (GSLs) are ubiquitous components of eukaryotic plasma membranes that consist of a ceramide backbone linked to a glycan moiety. Both the ceramide and the glycan parts of GSLs display structural variations that result in a remarkable repertoire of diverse compounds. This diversity of GSLs is exploited during embryogenesis, when different GSLs are produced at specific developmental stages and along several differentiation trajectories. Importantly, plasma membrane receptors interact with GSLsto modify their activities. Consequently, two otherwise identical cells can respond differently to the same stimulus owing to their different GSL composition. The metabolic reprograming of GSLs is in fact a necessary part of developmental programs, as its impairment results in developmental failure or tissue-specific defects. Moreover, single-cell variability is emerging as a fundamental player in development: GSL composition displays cell-to-cell variability in syngeneic cell populations owing to the regulatory gene expression circuits involved in microenvironment adaptation and in differentiation. Here, we discuss how GSLs are synthesized and classified and review the role of GSLs in the establishment and maintenance of cell identity. We further highlight the existence of the regulatory circuits that modify GSL pathways and speculate how GSL heterogeneity might contribute to developmental patterning

Glycosphingolipid metabolism in cell fate specification

Russo D;Capolupo L;D'Angelo G
2018

Abstract

Glycosphingolipids (GSLs) are ubiquitous components of eukaryotic plasma membranes that consist of a ceramide backbone linked to a glycan moiety. Both the ceramide and the glycan parts of GSLs display structural variations that result in a remarkable repertoire of diverse compounds. This diversity of GSLs is exploited during embryogenesis, when different GSLs are produced at specific developmental stages and along several differentiation trajectories. Importantly, plasma membrane receptors interact with GSLsto modify their activities. Consequently, two otherwise identical cells can respond differently to the same stimulus owing to their different GSL composition. The metabolic reprograming of GSLs is in fact a necessary part of developmental programs, as its impairment results in developmental failure or tissue-specific defects. Moreover, single-cell variability is emerging as a fundamental player in development: GSL composition displays cell-to-cell variability in syngeneic cell populations owing to the regulatory gene expression circuits involved in microenvironment adaptation and in differentiation. Here, we discuss how GSLs are synthesized and classified and review the role of GSLs in the establishment and maintenance of cell identity. We further highlight the existence of the regulatory circuits that modify GSL pathways and speculate how GSL heterogeneity might contribute to developmental patterning
2018
Istituto di Biochimica e Biologia Cellulare - IBBC
Glycosphingolipids
differentiation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/414373
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 58
  • ???jsp.display-item.citation.isi??? ND
social impact