Substrates composition and surface features of materials rule adhesion control of cells to surfaces. As a result, most of the aspects of cell functions, such as spreading, migration, proliferation, and differentiation, can be significantly influenced in biomedical applications. Cell cultures make possible to understand cell biology, tissue morphology, mechanisms of diseases, drug action, and tissue engineering development, among others. Recent techniques related to culturing 3D cell aggregates in the presence of very low wettable surfaces represent an innovative field for in vitro experimentation aimed at more reliable conditions to investigate both tumor and non-tumor cell lines. Matching in particular cell biology to innovative materials, this work reviews the recent literature available on promoting cell aggregates formation strongly influenced by the high surface hydrophobicity. In particular, for spheroid formation, the highest water repellent coatings seem to be required for the significant effectiveness of the process. In this way, 3D cell culture has become a reliable method for reproducing in vitro cellular growth in more realistic physiological conditions.

Super Liquid-repellent Surfaces and 3D Spheroids Growth

Ferrari M;Cirisano F;
2022

Abstract

Substrates composition and surface features of materials rule adhesion control of cells to surfaces. As a result, most of the aspects of cell functions, such as spreading, migration, proliferation, and differentiation, can be significantly influenced in biomedical applications. Cell cultures make possible to understand cell biology, tissue morphology, mechanisms of diseases, drug action, and tissue engineering development, among others. Recent techniques related to culturing 3D cell aggregates in the presence of very low wettable surfaces represent an innovative field for in vitro experimentation aimed at more reliable conditions to investigate both tumor and non-tumor cell lines. Matching in particular cell biology to innovative materials, this work reviews the recent literature available on promoting cell aggregates formation strongly influenced by the high surface hydrophobicity. In particular, for spheroid formation, the highest water repellent coatings seem to be required for the significant effectiveness of the process. In this way, 3D cell culture has become a reliable method for reproducing in vitro cellular growth in more realistic physiological conditions.
2022
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
3D spheroids
drug screening
hanging drop
omniphobic
sitting drop
superhydrophobic
wettability
File in questo prodotto:
File Dimensione Formato  
prod_471903-doc_191852.pdf

accesso aperto

Descrizione: Super Liquid-repellent Surfaces and 3D Spheroids Growth
Tipologia: Versione Editoriale (PDF)
Dimensione 2.11 MB
Formato Adobe PDF
2.11 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/414430
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact