Mt. Vulture trioctahedral micas-1M mainly consist of phlogopite-annite solid solutions with a minor component of brittle micas. However, both Li-free and Li- and F-rich compositions may coexist in the same volcano-stratigraphic level. We report the results of electron microprobe analysis (EMPA), secondary ion mass spectrometry (SIMS), and single-crystal X-ray diffraction (SCXRD) for three crystals (LC7-27Go, LC7-3Go, and LC7-1R) that are representative of both compositions. EMPA and SIMS showed that sample LC7-1R is richer in TiO2, Li2O, and F and poorer in H2O than the other samples. Structure refinements using anisotropic displacement parameters for the three samples, performed in space group C2/m, converged at 3.46 <= R <= 4.34, 3.89 <= R-w <= 4.39. When considering bond distances, the three samples can be described as homo-octahedral whereas mean atomic numbers suggest that only LC7-1R is meso-octahedral. Significant differences occur among the samples for some distortion parameters commonly used for micas. In particular, LC7-1R displays higher values of BLDM2, shift(M2) and lower values of Delta(K-O4) and t(K-O4) than those of samples LC7-3Go and LC7-27Go. These differences are ascribed to F- and Ti-substitutions. Cation distributions were obtained by combining EMPA, SIMS, and SCXRD data after analysis of the effect of normalization schemes commonly used in mica formula recalculation. In LC7-3Go and LC7-27Go, Ti is incorporated according to the Ti-Tschermak mechanism, whereas more than one Ti-substitution mechanism occurs in LC7-1R. For the latter sample, octahedral vacancies are present leading to a complex substitution pattern and complex structural distortions related to the special octahedral compositions that were determined.

An electron microprobe analysis, secondary ion mass spectrometry and single crystal X-ray diffraction study of phlogopites from Mt. Vulture, Potenza, Italy: Consideration of cation partitioning.

Ottolini L
2006

Abstract

Mt. Vulture trioctahedral micas-1M mainly consist of phlogopite-annite solid solutions with a minor component of brittle micas. However, both Li-free and Li- and F-rich compositions may coexist in the same volcano-stratigraphic level. We report the results of electron microprobe analysis (EMPA), secondary ion mass spectrometry (SIMS), and single-crystal X-ray diffraction (SCXRD) for three crystals (LC7-27Go, LC7-3Go, and LC7-1R) that are representative of both compositions. EMPA and SIMS showed that sample LC7-1R is richer in TiO2, Li2O, and F and poorer in H2O than the other samples. Structure refinements using anisotropic displacement parameters for the three samples, performed in space group C2/m, converged at 3.46 <= R <= 4.34, 3.89 <= R-w <= 4.39. When considering bond distances, the three samples can be described as homo-octahedral whereas mean atomic numbers suggest that only LC7-1R is meso-octahedral. Significant differences occur among the samples for some distortion parameters commonly used for micas. In particular, LC7-1R displays higher values of BLDM2, shift(M2) and lower values of Delta(K-O4) and t(K-O4) than those of samples LC7-3Go and LC7-27Go. These differences are ascribed to F- and Ti-substitutions. Cation distributions were obtained by combining EMPA, SIMS, and SCXRD data after analysis of the effect of normalization schemes commonly used in mica formula recalculation. In LC7-3Go and LC7-27Go, Ti is incorporated according to the Ti-Tschermak mechanism, whereas more than one Ti-substitution mechanism occurs in LC7-1R. For the latter sample, octahedral vacancies are present leading to a complex substitution pattern and complex structural distortions related to the special octahedral compositions that were determined.
2006
Istituto di Geoscienze e Georisorse - IGG - Sede Pisa
analysis; chemical (mineral); EPMA and SIMS investigation; crystal structure; trioctahedral micas-1M; major and minor elements; Ti-F-bearing phlogopites; trace elements and REE; Li-bearing micas; XRD data; single-crystal structure refinement
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/41449
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact